Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋麗英(Li-Ying Sung)
dc.contributor.authorJing Hsuen
dc.contributor.author徐淨zh_TW
dc.date.accessioned2021-06-16T16:18:54Z-
dc.date.available2025-06-09
dc.date.copyright2020-06-09
dc.date.issued2020
dc.date.submitted2020-05-22
dc.identifier.citationAhmad, S., K. Bhatia, A. Kannan, and L. Gangwani. 2016. 'Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy', Journal of Experimental Neuroscience, 10: 39-49.
Benoff, S., A. Jacob, and I. Hurley. 2000. 'Male infertility and environmental exposure to lead and cadmium', Human Reproduction Update, 6: 107-21.
Bhattacharjee, S., and S. Nandi. 2018. 'Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy', Cancers (Basel), 10.
Bowles, J., and P. Koopman. 2007. 'Retinoic acid, meiosis and germ cell fate in mammals', Development, 134: 3401-11.
Brinster, R. L., and M. R. Avarbock. 1994. 'Germline transmission of donor haplotype following spermatogonial transplantation', PNAS, 91: 11303-07.
Brinster, R. L., and J. W. Zimmermann. 1994. 'Spermatogenesis following male germ-cell transplantation', PNAS, 91: 11298-302.
Bucci, L. R., and M. L. Meistrich. 1987. 'Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations', Mutation Research: 259-68.
Burghes, A. H., and C. E. Beattie. 2009. 'Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?', Nature Review Neuroscience, 10: 597-609.
Butchbach, M. E. 2016. 'Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases', Frontiers Molecular Biosciences, 3: 1-10.
Butchbach, M. E. R., and A. H. M. Burghes. 2004. 'Perspectives on models of spinal muscular atrophy for drug discovery', Drug Discovery Today: Disease Models, 1: 151-56.
Chan, F., M. Oatley, A. Kaucher, Q. Yang, C. Bieberich, C. Shashikant, and J. Oatley. 2014. 'Functional and molecular features of the Id4+ germline stem cell population in mouse testes', Genes Development, 28: 1351-62.
Chang, W. F., J. Xu, C. C. Chang, S. H. Yang, H. Y. Li, H. M. Hsieh-Li, M. H. Tsai, S. C. Wu, W. T. Cheng, J. L. Liu, and L. Y. Sung. 2015. 'SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice', Brain Structure Function, 220: 1539-53.
Chen, Z., Z. Li, and Z. He. 2015. 'Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine', Asian Journal of Andrology, 17: 367-72.
Creemers, L. B., K. Ouden, A. M. M. van Pelt, and D. G. Rooij. 2002. 'Maintenance of adult mouse type A spermatogonia in vitro: influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture', Reproduction, 124: 791-99.
Durruthy Durruthy, J., C. Ramathal, M. Sukhwani, F. Fang, J. Cui, K. E. Orwig, and R. A. Reijo Pera. 2014. 'Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules', Human Molecular Genetics, 23: 3071-84.
Endo, T., M. M. Mikedis, P. K. Nicholls, D. C. Page, and D. G. de Rooij. 2019. 'Retinoic Acid and Germ Cell Development in the Ovary and Testis', Biomolecules, 9.
Fischer, U., Q. Liu, and G. Dreyfuss. 1997. 'The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis', Cell, 90: 1023-29.
Forbes, C. M., R. Flannigan, and P. N. Schlegel. 2018. 'Spermatogonial stem cell transplantation and male infertility: Current status and future directions', Arab Journal of Urology, 16: 171-80.
Galdon, G., A. Atala, and H. Sadri-Ardekani. 2016. 'In Vitro Spermatogenesis: How Far from Clinical Application?', Current Urology Reports, 17: 49.
Garcia, E. L., Z. Lu, M. P. Meers, K. Praveen, and A. G. Matera. 2013. 'Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes', RNA, 19: 1510-6.
Gholami, K., G. Pourmand, M. Koruji, M. Sadighigilani, S. Navid, F. Izadyar, and M. Abbasi. 2018. 'Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems', Reproductive Biology, 18: 397-403.
Giudice, M. G., F. de Michele, J. Poels, M. Vermeulen, and C. Wyns. 2017. 'Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice?', Stem Cell Research, 21: 171-77.
Givelet, M., C. Lapoujade, and P. Fouchet. 2019. 'Competition for Food Drives Stem Cell Fate in Facultative Niches', Cell Stem Cell, 24: 1-2.
Gosden, R. G. 2001. 'Trade-offs in cancer and reproduction', Human Reproduction Update, 7: 360-62.
Gowing, G., and C. N. Svendsen. 2011. 'Stem cell transplantation for motor neuron disease: current approaches and future perspectives', Neurotherapeutics, 8: 591-606.
Grice, S. J., and J. L. Liu. 2011. 'Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila', PLoS Genetics, 7: e1002030.
Gul, M., L. Dong, D. Wang, M. A. Diri, and C. Y. Andersen. 2020. 'Surrogate testes: Allogeneic spermatogonial stem cell transplantation within an encapsulation device may restore male fertility', Med Hypotheses, 139: 109634.
Gul, M., S. Hildorf, L. Dong, J. Thorup, E. R. Hoffmann, C. F. S. Jensen, J. Sonksen, D. Cortes, J. Fedder, C. Y. Andersen, and E. Goossens. 2020. 'Review of injection techniques for spermatogonial stem cell transplantation', Human Reproduction Update: 1-24.
Hara, K., T. Nakagawa, H. Enomoto, M. Suzuki, M. Yamamoto, B. D. Simons, and S. Yoshida. 2014. 'Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states', Cell Stem Cell, 14: 658-72.
Helsel, A. R., M. J. Oatley, and J. M. Oatley. 2017. 'Glycolysis-Optimized Conditions Enhance Maintenance of Regenerative Integrity in Mouse Spermatogonial Stem Cells during Long-Term Culture', Stem Cell Reports, 8: 1430-41.
Hermann, B. P., M. Sukhwani, C. C. Lin, Y. Sheng, J. Tomko, M. Rodriguez, J. J. Shuttleworth, D. McFarland, R. M. Hobbs, P. P. Pandolfi, G. P. Schatten, and K. E. Orwig. 2007. 'Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques', Stem Cells, 25: 2330-8.
Hsieh-Li, H. M., J. G. Chang, Y. J. Jong, M. H. Wu, Nancy Wang, C. H. Tsai, and H. Li. 2000. 'A mouse model for spinal muscular atrophy', Nature genetics, 24: 66-70.
Ibtisham, F., J. Wu, M. Xiao, L. An, Z. Banker, A. Nawab, Y. Zhao, and G. Li. 2017. 'Progress and future prospect of in vitro spermatogenesis', Oncotarget, 8: 66709-727.
Inoue, N., Y. Onohara, and S. Yokota. 2011. 'Expression of a Testis-Specific Nuclear Protein, TRA98, in Mouse Testis during Spermatogenesis. A Quantitative and Qualitative Immunoelectron Microscopy (IEM) Analysis', Open Journal of Cell Biology, 01: 11-20.
Ishikura, Y., Y. Yabuta, H. Ohta, K. Hayashi, T. Nakamura, I. Okamoto, T. Yamamoto, K. Kurimoto, K. Shirane, H. Sasaki, and M. Saitou. 2016. 'In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells', Cell Reports, 17: 2789-804.
Kanatsu-Shinohara, M., H. Naoki, and T. Shinohara. 2016. 'Nonrandom Germline Transmission of Mouse Spermatogonial Stem Cells', Developmental Cell, 38: 248-61.
Kanatsu-Shinohara, M., N. Ogonuki, K. Inoue, H. Miki, A. Ogura, S. Toyokuni, and T. Shinohara. 2003. 'Long-term proliferation in culture and germline transmission of mouse male germline stem cells', Biology of Reproduction, 69: 612-6.
Kanatsu-Shinohara, M., M. Takehashi, S. Takashima, J. Lee, H. Morimoto, S. Chuma, A. Raducanu, N. Nakatsuji, R. Fassler, and T. Shinohara. 2008. 'Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin', Cell Stem Cell, 3: 533-42.
Kitadate, Y., D. J. Jorg, M. Tokue, A. Maruyama, R. Ichikawa, S. Tsuchiya, E. Segi-Nishida, T. Nakagawa, A. Uchida, C. Kimura-Yoshida, S. Mizuno, F. Sugiyama, T. Azami, M. Ema, C. Noda, S. Kobayashi, I. Matsuo, Y. Kanai, T. Nagasawa, Y. Sugimoto, S. Takahashi, B. D. Simons, and S. Yoshida. 2019. 'Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche', Cell Stem Cell, 24: 79-92.
Kolasa, Agnieszka, Kamila Misiakiewicz, Mariola Marchlewicz, and Barbara Wiszniewska. 2012. 'The generation of spermatogonial stem cells and spermatogonia in mammals', Reproductive Biology, 12: 5-23.
Krausz, C. 2011. 'Male infertility: pathogenesis and clinical diagnosis', Best Practice Research Clinical Endocrinology Metabolism, 25: 271-85.
Kubota, H., M. R. Avarbock, and R. L. Brinster. 2004. 'Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells', PNAS, 101: 16489-94.
Kubota, H., and R. L. Brinster. 2006. 'Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses', Nature Clinical Practice Endocrinology Metabolism, 2: 99-108.
Kubota, H., and R. L. Brinster. 2008. 'Culture of Rodent Spermatogonial Stem Cells, Male Germline Stem Cells of the Postnatal Animal', Methods Cell Biology, 86: 59-84.
Lee, L., S. E. Davies, and J. L. Liu. 2009. 'The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway', Developmental Biology, 332: 142-55.
Lee, S. J., L. R. Schover, A. H. Partridge, P. Patrizio, W. H. Wallace, K. Hagerty, L. N. Beck, L. V. Brennan, and K. Oktay. 2006. 'American society of clinical oncology recommendations on fertility preservation in cancer patients', Journal of clinical oncology, 24: 2917-31.
Lee, S. W., G. Wu, N. Y. Choi, H. J. Lee, J. S. Bang, Y. Lee, M. Lee, K. Ko, H. R. Scholer, and K. Ko. 2018. 'Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells', Molecules and Cells, 41: 631-38.
Lefebvre, S., L. Burglen, S. Reboullet, O. Clermont, P. Beurlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, D. Paslier, J. Frezal, D. Cohen, J. Weissenbach, A. Munnich, and J. Melki. 1995. 'Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene', Cell, 80: 155-65.
Lefebvre, S., P. Burlet, Q. Liu, S. Bertrandy, O. Clermont, A. Munnich, G. Dreyfuss, and J. Melki. 1997. 'Correlation between severity and SMN protein level in spinal muscular atrophy', Nature genetics, 16: 265-9.
Li, L., M. Wang, M. Wang, X. Wu, L. Geng, Y. Xue, X. Wei, Y. Jia, and X. Wu. 2016. 'A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells', Cell Death and Disease, 7: e2140.
Liao, H. F., W. S. Chen, Y. H. Chen, T. H. Kao, Y. T. Tseng, C. Y. Lee, Y. C. Chiu, P. L. Lee, Q. J. Lin, Y. H. Ching, K. Hata, W. T. Cheng, M. H. Tsai, H. Sasaki, H. N. Ho, S. C. Wu, Y. H. Huang, P. Yen, and S. P. Lin. 2014. 'DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells', Development, 141: 2402-13.
Liao, H. F., J. Kuo, H. H. Lin, and S. P. Lin. 2016. 'Isolation of THY1+ Undifferentiated Spermatogonia from Mouse Postnatal Testes Using Magnetic-activated Cell Sorting (MACS)', Bio-Protocol, 6: 1-12.
Liu, J. L., and J. G. Gall. 2007. 'U bodies are cytoplasmic structures that contaon uridine-rich small nuclear ribonucleoproteins and associate with P bodies', PNAS, 104: 11655-59.
Lorson, C. L., H. Rindt, and M. Shababi. 2010. 'Spinal muscular atrophy: mechanisms and therapeutic stragies', Human Molecular Genetics, 19: R111-R18.
Lourenco, D., R. Brauner, M. Rybczynska, C. Nihoul-Fekete, K. McElreavey, and A. Bashamboo. 2011. 'Loss-of-function mutation in GATA4 causes anomalies of human testicular development', PNAS, 108: 1597-602.
Margaryan, H., A. Dorosh, J. Capkova, P. Manaskova-Postlerova, A. Philimonenko, P. Hozak, and J. Peknicova. 2015. 'Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm', Reproductive Biology and Endocrinology, 13: 15.
Martin, L. A., and M. Seandel. 2013. 'Serial enrichment of spermatogonial stem and progenitor cells (SSCs) in culture for derivation of long-term adult mouse SSC lines', Journal of Visualized Experiments: e50017.
McClive, P., and A. Sinclair. 2001. 'Rapid DNA extration and PCR-sexing of mouse embryos', Molecular Reproduction and Development, 60: 225-26.
Medrano, J. V., A. M. Martinez-Arroyo, M. Sukhwani, I. Noguera, A. Quinonero, J. M. Martinez-Jabaloyas, A. Pellicer, J. Remohi, K. E. Orwig, and C. Simon. 2014. 'Germ cell transplantation into mouse testes procedure', Fertil Steril, 102: e11-2.
Meistrich, M. L., and R. A. Hess. 2013. 'Assessment of spermatogenesis through staging of seminiferous tubules', Methods in Molecular Biology, 927: 299-307.
Mohaqiq, M., M. Movahedin, Z. Mazaheri, and N. Amirjannati. 2019. 'Successful Human Spermatogonial Stem Cells Homing in Recipient Mouse Testis after In Vitro Transplantation and Organ Culture', Cell Journal, 20: 513-20.
Montoto, L. G., L. Arregui, N. M. Sanchez, M. Gomendio, and E. R. Roldan. 2012. 'Postnatal testicular development in mouse species with different levels of sperm competition', Reproduction, 143: 333-46.
Nagamatsu, G., and K. Hayashi. 2017. 'Stem cells, in vitro gametogenesis and male fertility', Reproduction, 154: F79-F91.
Nagano, M., M. R. Avarbock, E. B. Leonida, C. J. Brinster, and R. L. Brinster. 1998. 'Culture of mouse spermatogonial stem cells', Tissue Cell, 30: 389-97.
Nagano, M., B. Y. Ryu, C. J. Brinster, M. R. Avarbock, and R. L. Brinster. 2003. 'Maintenance of mouse male germ line stem cells in vitro', Biology of Reproduction, 68: 2207-14.
Ning, L., E. Goossens, M. Geens, D. V. Saen, and H. Tournaye. 2012. 'Spermatogonial stem cells as a source for regenerative medicine', Middle East Fertility Society Journal, 17: 1-7.
Ogawa, T., J. M. Arechaga, M. R. Avarbock, and R. L. Brinster. 1997. 'Transplantation of testis germinal cells into mouse seminiferous tubules', The International Journal of Developmental Biology, 41: 111-222.
Ottesen, E. W., M. D. Howell, N. N. Singh, J. Seo, E. M. Whitley, and R. N. Singh. 2016. 'Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy', Scientic Report, 6: 20193.
Phillips, B. T., K. Gassei, and K. E. Orwig. 2010. 'Spermatogonial stem cell regulation and spermatogenesis', Philos Trans R Soc Lond B Biol Sci, 365: 1663-78.
Qin, Y., L. Liu, Y. He, C. Wang, M. Liang, X. Chen, H. Hao, T. Qin, X. Zhao, and D. Wang. 2016. 'Testicular Busulfan Injection in Mice to Prepare Recipients for Spermatogonial Stem Cell Transplantation Is Safe and Non-Toxic', PLoS One, 11: e0148388.
Rajender, S., K. Avery, and A. Agarwal. 2011. 'Epigenetics, spermatogenesis and male infertility', Mutation Research, 727: 62-71.
Rato, L., M. G. Alves, S. Socorro, A. I. Duarte, J. E. Cavaco, and P. F. Oliveira. 2012. 'Metabolic regulation is important for spermatogenesis', Nature Review Urology, 9: 330-8.
Reding, S. C., A. L. Stepnoski, E. W. Cloninger, and J. M. Oatley. 2010. 'THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis', Reproduction, 139: 893-903.
Ryu, B. Y., H. Kubota, M. R. Avarbock, and R. L. Brinster. 2005. 'Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat', PNAS, 102: 14302-07.
Sato, T., K. Katagiri, Y. Kubota, and T. Ogawa. 2013. 'In vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method', Nature Protocol, 8: 2098-104.
Sato, T., K. Katagiri, T. Yokonishi, Y. Kubota, K. Inoue, N. Ogonuki, S. Matoba, A. Ogura, and T. Ogawa. 2011. 'In vitro production of fertile sperm from murine spermatogonial stem cell lines', Nature Communication, 2: 472.
Sato, T., T. Sakuma, T. Yokonishi, K. Katagiri, S. Kamimura, N. Ogonuki, A. Ogura, T. Yamamoto, and T. Ogawa. 2015. 'Genome Editing in Mouse Spermatogonial Stem Cell Lines Using TALEN and Double-Nicking CRISPR/Cas9', Stem Cell Reports, 5: 75-82.
Schrank, B., Gotz R., Gunnersen J., Ure J., Toyka K., Smith A., and Sendtner M. 1997. 'Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early moouse embryos', PNAS, 94: 9920-25.
Seandel, M., D. James, S. V. Shmelkov, I. Falciatori, J. Kim, S. Chavala, D. S. Scherr, F. Zhang, R. Torres, N. W. Gale, G. D. Yancopoulos, A. Murphy, D. M. Valenzuela, R. M. Hobbs, P. P. Pandolfi, and S. Rafii. 2007. 'Generation of functional multipotent adult stem cells from GPR125+ germline progenitors', Nature, 449: 346-50.
Seki, Y., K. Hayashi, K. Itoh, M. Mizugaki, M. Saitou, and Y. Matsui. 2005. 'Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice', Developmental Biology, 278: 440-58.
Shinohara, T., and M. Kanatsu-Shinohara. 2020. 'Transgenesis and Genome Editing of Mouse Spermatogonial Stem Cells by Lentivirus Pseudotyped with Sendai Virus F Protein', Stem Cell Reports, 14: 447-61.
Sleigh, J. N., T. H. Gillingwater, and K. Talbot. 2011. 'The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy', Disease Models Mechanisms, 4: 457-67.
Sofikitis, N., E. Pappas, A. Kawatani, D. Baltogiannis, D. Loutradis, N. Kanakas, D. Giannakis, F. Dimitriadis, K. Tsoukanelis, I. Georgiou, G. Makrydimas, Y. Mio, V. Tarlatzis, M. Melekos, and I. Miyagawa. 2005. 'Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment', Human Reproduction Update, 11: 229-59.
Takashima, S., and T. Shinohara. 2018. 'Culture and transplantation of spermatogonial stem cells', Stem Cell Research, 29: 46-55.
Talbot, K., C.P. Ponting, A.M. Theodosiou, N.R. Rodrigues, R. Surtees, R. Mountford, and K.E. Davies. 1997. 'Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism', Human Molecular Genetics, 6: 497-500.
Tokue, M., K. Ikami, S. Mizuno, C. Takagi, A. Miyagi, R. Takada, C. Noda, Y. Kitadate, K. Hara, H. Mizuguchi, T. Sato, M. M. Taketo, F. Sugiyama, T. Ogawa, S. Kobayashi, N. Ueno, S. Takahashi, S. Takada, and S. Yoshida. 2017. 'SHISA6 Confers Resistance to Differentiation-Promoting Wnt/beta-Catenin Signaling in Mouse Spermatogenic Stem Cells', Stem Cell Reports, 8: 561-75.
Wang, J., H. Cao, X. Xue, C. Fan, F. Fang, J. Zhou, Y. Zhang, and X. Zhang. 2014. 'Effect of vitamin C on growth of caprine spermatogonial stem cells in vitro', Theriogenology, 81: 545-55.
Watanabe, S., M. Kanatsu-Shinohara, N. Ogonuki, S. Matoba, A. Ogura, and T. Shinohara. 2018. 'In Vivo Genetic Manipulation of Spermatogonial Stem Cells and Their Microenvironment by Adeno-Associated Viruses', Stem Cell Reports, 10: 1551-64.
Watanabe, S., M. Kanatsu-Shinohara, and T. Shinohara. 2019. 'Sendai virus-mediated transduction of mammalian spermatogonial stem cellsdagger', Biology of Reproduction, 100: 523-34.
Wirth, B., L. Brichta, B. Schrank, H. Lochmuller, S. Blick, A. Baasner, and R. Heller. 2006. 'Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number', Human Genetics, 119: 422-8.
Yamada, M., L. De Chiara, and M. Seandel. 2016. 'Spermatogonial Stem Cells: Implications for Genetic Disorders and Prevention', Stem Cells And Development, 25: 1483-94.
Yuan, Z., R. Hou, and J. Wu. 2009. 'Generation of mice by transplantation of an adult spermatogonial cell line after cryopreservation', Cell Proliferation, 42: 123-31.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63016-
dc.description.abstract運動神經元存活蛋白(Survival motor neuron, SMN)廣泛表現於多種細胞間,其編碼基因SMN並高度保留於跨物種間,主要功能為參與RNA剪接體(RNA spliceosome)重要組成之一,涉及細胞轉錄調控及胞內運輸。脊髓性肌肉萎縮症(spinal muscular atrophy, SMA)是由於SMN1基因發生缺失或突變的疾病,患者發生漸進性地運動神經元萎縮、肌肉退化,嚴重者甚至死亡。為探究運動神經元存活蛋白缺失對於病程演進是基於肌肉退化抑或是發育受影響,近年與合作團隊的共同研究發現,運動神經元存活蛋白表現在果蠅的神經幹細胞與生殖幹細胞中,子細胞分化程度愈高,運動神經元存活蛋白表現量愈低;而運動神經元存活蛋白在小鼠胚胎發育、胚胎幹細胞潛能中亦扮演重要角色,並發現運動神經元存活蛋白影響生殖細胞的生長。此等研究結果重複驗證運動神經元存活蛋白維持著多種幹細胞之潛能,並調控其增生與分化,且與生殖系統高度相關。故本研究進而提出運動神經元存活蛋白在生殖幹細胞中扮演著重要角色。本研究係透過以活體外及活體內兩層面,探討運動神經元存活蛋白對於精原幹細胞(spermatogonial stem cells, SSCs)潛能維持及其分化生成精子(spermatogenesis)能力之影響。試驗結果顯示,在脊髓性肌肉萎縮症疾病模式的精原幹細胞試驗中,低量表現的運動神經元存活蛋白影響了精原幹細胞的生長及潛能的維持;而在以慢病毒(lentivirus)轉導高量表現運動神經元存活蛋白之試驗組發現,精原幹細胞於體外培養的生長情形獲得改善,包括細胞增生情形、精原幹細胞特異標誌蛋白PLZF表現比例(潛能維持)等方面。進一步在體內移植試驗中,可觀察到高量表現運動神經元存活蛋白後的精原幹細胞顯著表現了更好的歸航能力(homing)及更完整的分化表現。本試驗結果不但證明運動神經元存活蛋白有利於小鼠精原幹細胞的體外培養,將有助於穩定精原幹細胞體外培養之研究與應用,並為該蛋白有效提升精原幹細胞於活體內之分化能力表現提供直接證據,闡明運動神經元存活蛋白參與生殖幹細胞之生長調控。zh_TW
dc.description.abstractSurvival motor neuron (SMN) is ubiquitously expressed in numerous cell types and its encoding gene SMN is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes which are important for pre-mRNA splicing. One related neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of the survival motor neuron 1 gene (SMN1). Patients with this disease gradually lose their spinal motor neurons. It is unknown how exactly the reduction of a ubiquitously functional protein results in tissue-specific impairment. Recently, several studies sought to determine whether this disease is caused by developmental or degenerative defects. In Drosophila germline stem cells, SMN is expressed in a striking concentration gradient in the differentiating progeny. In mice, SMN has been proven to maintain stemness and regulate the proliferation and differentiation of several types of stem cells, as well as being highly related with germline systems. The purpose of this study is to determine if SMN plays any role in maintaining spermatogonial stem cells (SSCs) potency and in the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice, comparing to those from wild-type (WT) mice, showed slow cell growth accompanied by significantly reduced expression of spermatogonia marker PLZF (Promyelocytic leukemia zinc finger). SMA SSCs failed to proliferate and quickly lost SSC characteristics. In contrast, SMN overexpressed-SSCs showed enhanced cell proliferation and improved potency maintenance capacity than WT ones. Moreover, the transplantation experiments revealed that SMN overexpressed-SSCs demonstrate superior ability of homing in host seminiferous tubule and more complete performance in differentiating progeny compared to control groups. These findings strengthen our earlier findings that SMN is involved in germline stem cell development.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:18:54Z (GMT). No. of bitstreams: 1
ntu-109-R04b43022-1.pdf: 3523065 bytes, checksum: 5af16034b4ec99a78d9639f1c9266a2b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝..................................................ii
摘要.................................................iii
Abstract..............................................iv
目次...................................................v
圖次.................................................vii
表次..................................................ix
縮寫表.................................................x
第一章 前言與文獻探討..................................1
第一節 前言..........................................1
第二節 文獻探討......................................3
2.1 運動神經元存活蛋白之功能簡介與研究.............3
2.2 脊髓性肌肉萎縮症之簡介及其治療.................4
2.3 精原幹細胞之簡介及其研究與應用.................5
2.4 運動神經元存活蛋白於精原幹細胞功能影響之研究...6
第二章 精原幹細胞體外培養平台建置.....................13
第一節 前言.........................................13
第二節 材料與方法...................................15
第三節 結果.........................................22
第四節 討論.........................................32
第三章 脊髓性肌肉萎縮症精原幹細胞之體外培養...........35
第一節 前言.........................................35
第二節 材料與方法...................................36
第三節 結果.........................................38
第四節 討論.........................................45
第四章 高量表現運動神經元存活蛋白對精原幹細胞之影響...47
第一節 前言.........................................47
第二節 材料與方法...................................49
第三節 結果.........................................52
第四節 討論.........................................67
綜合討論..............................................70
總結與未來展望........................................73
參考文獻..............................................74
附錄..................................................88
dc.language.isozh-TW
dc.subject運動神經元存活蛋白zh_TW
dc.subject脊髓性肌肉萎縮症zh_TW
dc.subject精原幹細胞zh_TW
dc.subject精子生成zh_TW
dc.subjectsurvival motor neuronen
dc.subjectspinal muscular atrophyen
dc.subjectspermatogonial stem cellen
dc.subjectspermatogenesisen
dc.title運動神經元存活蛋白於精原幹細胞潛能與精子發育功能角色之研究zh_TW
dc.titleThe Role of Survival Motor Neuron Protein in Mouse Spermatogonial Stem Cell Potency and Spermatogenesisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor周子賓(Tuz-Bing Chou)
dc.contributor.oralexamcommittee林劭品(Shau-Ping Lin),吳信志(Shinn-Chih Wu),楊尚訓(Shang-Hsun Yang),呂仲浩(Chung-Hao Lu)
dc.subject.keyword運動神經元存活蛋白,脊髓性肌肉萎縮症,精原幹細胞,精子生成,zh_TW
dc.subject.keywordsurvival motor neuron,spinal muscular atrophy,spermatogonial stem cell,spermatogenesis,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201900638
dc.rights.note有償授權
dc.date.accepted2020-05-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved