Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6297
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧佳遇(Chia-Yu Lu)
dc.contributor.authorChin-Huang Huangen
dc.contributor.author黃欽煌zh_TW
dc.date.accessioned2021-05-16T16:25:21Z-
dc.date.available2015-06-21
dc.date.available2021-05-16T16:25:21Z-
dc.date.copyright2013-06-21
dc.date.issued2013
dc.date.submitted2013-05-13
dc.identifier.citationAaser, E., Gullestad, L., Tollofsrud, S., Lundberg, J.,Hall, C., Djoseland, O., Kjekshus, J., and Forfang, K. (1997) Effect of bolus injection versus continuous infusion of furosemide on diuresis and neurohormonal activation in patients with severe congestive heart failure: Scandinavian Journal of Clinical & Laboratory Investigation, v. 57, no. 4, p. 361-367.
Adam, J., Lohrmann, J., Hoth, S., Kukowski, N., and Oncken, O. (2002) Strain variation and partitioning in thrust wedges: High-resolution data from scaled sandbox experiments by 2D-3D PIV analysis: Bollettino di Geofisica
teorica ed applicata, v. 42, no. 1/2, p. 123-126.
Adam, J., Urai, J. L., Wieneke, B., Oncken, O. P., K., Kukowski, N. L., J., Hoth, S., van der Zee, W., and Schmatz, J. (2005) Shear localisation and strain distribution during tectonic faulting - new insights from granular-flow experiments and high-resolution optical image correlation techniques: Journal of Structural Geology, v. 27, no. 2, p. 283-301.
Adrian, R. J. (1991) Particle-Imaging Techniques for Experimental Fluid Mechanics: Annual Review of Fluid Mechanics, v. 23, p. 261-304.
Bachman, S. B., Lewis, SD. and Schweller, W.J(1983)Evolution of a forearc basin, Luzon Central Valley,Philippines: American Association of Petroleum Geologists Bulletin, v. 67, p. 1143-1162.
Ballard, J. F., Brun, J.-P., Van Den Driessche, J., and Allemand, P. (1987) Propagation des evauchements au-dessus des zones de decollement: modeles experimentaux: 305, v.II, p. 1249-1253.
Biot, M. A. (1961) Theory of Folding of Stratified Viscoelastic Media and Its Implications in Tectonics and Orogenesis: Geological Society of America Bulletin, v. 72, no. 11, p. 1595-1620.
Briais, A., and Pautot, G. (1992) Reconstructions of the South China Sea from structural data and magnetic anomalies, in Xianglong, J., Kudrass, H.R., and Pautot, G., eds.,Marine geology and geophysics of the South China Sea: China Ocean Press, p. 389-422.
Byrne, T. (1998) Pre-collision kinematics and a possible modern analog for the Lichi and Kenting melanges, Taiwan: J. Geol. Soc. China, v. 41, p. 535-550.
Cadell, H. M. (1888) Experimental researches in mountain building: Transactions of the Royal Society of Edinburgh, v. 35, p. 337-357.
Chang, C. P., Angelier, J., and Huang, C. Y. (2000) Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan: Tectonophysics, v. 325, no. 1-2, p. 43-62.
Chapple, W. M. (1978) Mechanics of Thin-Skinned Fold-and Thrust Belts: Geological Society of America Bulletin, v. 89, no. 8, p. 1189-1198.
Chemenda, A. I., Yang, R. K., Hsieh, C. H., and Groholsky, A. L. (1997) Evolutionary model for the Taiwan collision based on physical modelling: Tectonophysics, v. 274, no. 1-3, p. 253-274.
Chemenda, A. I., Yang, R. K., Stephan, J. F., Konstantinovskaya, E. A., and Ivanov, G. M. (2001) New results from physical modelling of arc-continent collision in Taiwan: evolutionary model: Tectonophysics, v. 333, no. 1-2, p. 159-178.
Chu, H. T., Liang, S. H., Lee, J. C., and Chen, C. L. (2010) A new view of the Hukou fault: discovery of an active backthrust in the hanging wall and Its structural analyses: Special Publication of the Central Geological Survey, MOEA, v. 26, p. 31-52.
Dahlen, F. A., and Barr, T. D. (1989) Brittle frictional mountain building 1. Deformation and mechanical energy budget: Journal of Geophysical Research, v. 94, no. B4, p. 3906-3922.
Dahlen, F. A. (1990) Critical Taper Model of Fold-and-Thrust Belts and Accretionary Wedges: Annual Review of Earth and Planetary Sciences, v. 18, p. 55-99.
Davis, D., Suppe, J., and Dahlen, F. A. (1983) Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Journal of Geophysical Research, v. 88, no. Nb2, p. 1153-1172.
Dominguez, S., Avouac, J. P., and Michel, R. (2003) Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan: J. Geophys. Res., v. 108, no. B2, p. 2083.
Elliott, D. (1976) The motion of thrust sheets: J. Geoph. Res, v. 81, no. 949-963.
Ellis, S. (1996) Forces driving continental collision: Reconciling indentation and mantle subduction tectonics: Geology, v. 24, no. 8, p. 699-702.
England, P., and Houseman, G. (1986) Finite Strain Calculations of Continental Deformation .2. Comparison with the India-Asia Collision Zone: Journal of Geophysical Research-Solid Earth and Planets, v. 91, no. B3, p. 3664-3676.
Fisher, D., Lu, C. Y., and Chu, H. T. (2002) Taiwan Slate Belt: Insights into the ductile interior of an arc-continent collision, 2002, in., Geology and Geophysics of an Arc-continent collision, Taiwan, Byrne T. B., and Liu, C.-S., eds, Boulder, Colorado:Geol. Soc. Am. V. Special Paper 358, P 93-106.
Fuh, S. C., Liu, C. S., and Song, G. S. (1994) Decoupled transcurrent faults in the offshore area south of Taiwan: Petrol: Petroleum Geology of Taiwan, v. 29, p. 27-45.
Gorceix, C. (1924) Experiences de laboratoire sur la formation des montagnes: Revue de geographie alpine, v. 12, no. 1, p. 31-78.
Fuh, S. C., Liu, C. S., Lundberg, N., and Reed, D. L. (1997) Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision process: Tectonophysics, v. 274, no. 25-39.
Hall, J. (1815) On the vertical position and convolutions of certain strata and their relation with granite: Transactions of the Royal Society of Edinburgh, v. 7, p. 79-108.
Hayes, D. E., and Lewis, S. D. (1984) A geophysical study of the Manila Trench, Luzon, Philippines 1. Crustal structure, gravity, and regional tectonic evolution : Journal of Geophysical Research, v. 89, p. 9171-9195.
Horsfield, W. T. (1977) An experimental approach to basement-controlled faulting: Geologie en Mijnbouw, v. 56, no. 4, p. 363-370.
Hoth, S. (2006) Deformation, erosion and natural resources in continental collision zones. Insight from scaled sandbox simulations: GeoForschungsZentrum Potsdam, Potsdam, Germany, p. 153.
Hoth, S., Hoffmann-Rothe, A., and Kukowski, N. (2007) Frontal accretion: An internal clock for bivergent wedge deformation and surface uplift: Journal of Geophysical Research-Solid Earth, v. 112, no. B6.
Huang, C. Y., Shyu, C. T., Lin, S. B., Lee, T. Q., and Sheu, D. D. (1992) Marine geology in the arc-continent collision zone off southeastern Taiwan: implication for late Neogene evolution of the Coastal Range:Marine Geology, v. 107, p. 183-212.
Huang, C. Y., P.B., Y., C.W., L., Wang, T. K., and Chang, C. P. (2000) Geodynamic processes of Taiwan arc-continental collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica: Tectonophysics, v. 325, p. 1-21.
Hubbert, M. K. (1937) Theory of scale models as applied to the study of geologic structures: Bulletin of the Geological Society of America, v. 48, no. 9/12, p. 1459-1519.
Hubbert, M.K. (1951) Mechanical basis for certain familiar geologic structures: Geological Society of American Bulletin, v. 62, pp. 335-372.
Jaeger, J. C., and Cook, N. G. W. (1969) Fundamentals of Rock Mechanics. Mathuen: London, p. 515.
Karig, D. E. (1983) Accreted Terranes in the Northern Part of the Philippine Archipelago: Tectonics, v. 2, no. 2, p. 211-236.
Katsumata, M., and Sykes, L. R. (1969) Plate convergence and deformation, North Luzon Ridge, Philippines: Tectonophysics, v. 168, no. 221-237.
Klinkmuller, M., Rosenau, M., Boutelier, D., Kemnitz, H., and Schreurs, G. (2008) Properties benchmark of granular and viscous analogue materials. Abstract for the GeoMod 2008 pre-conference workshop 'Analogue and numerical modelling of crustal processes: Villa La Pietra, Firenze.
Koyi, H., 1997, Analogue modelling: from qualitative to quantitative technique - A historical outline: Journal of Petroleum Geology, v. 20, no. 2, p. 223-238.
Landreth, C. C., Adrian., R. J., and Yao., C.-S. (1988) Double pulse particle image velocimetry with directional resolution for complex flows: Experiments in Fluids 6, v. 2, p. 119-128.
Lecordier, B., and Mouqallid., M. (1994) CCD recording method for cross-correlation PIV development in unstationary high speed flow: Experiments in Fluids 17, v. 3, p. 205-208.
Lee, J. C., Rubin, C., Mueller, K., Chen, Y. G., Chan, Y. C., Sieh, K., Chu, H. T., and Chen, W. S. (2004) Quantitative analysis of movement along an earthquake thrust scarp: a case study of a vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan: Journal of Asian Earth Sciences, v. 23, no. 2, p. 263-273.
Lewis, S. D., and Hayes, D. E. (1984) A geophysical study of the Manila Trench, Luzon, Philippines: 2. Fore arc basin structural and stratigraphic evolution: Journal of Geophysical Research, v. 89, p. 9196-9214.
Lieske, J., Lundberg, N., and Reed, D. L. (1992) Backthrusting and accretion in the submarine Taiwan accretionary prism: SeaMARC II and seismic reflection data. EOS, Trans.: Am. Geophys. Union, v. 73, no. 557.
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O. (2003) The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges: Journal of Structural Geology, v. 25, no. 10, p. 1691-1711.
Lu, C. Y., Sun, L. J., Lee, J. C., Liou, Y. S., and Liou, T. S. (1989) The shear structures in the Miocene Lushan Formation of the Suao area,Eastern Taiwan. : Proc.Geol. Soc. China, v. 32, no.2, p. 121-137.
Lu, C. Y., and Hsu, J. K. (1992) Tectonic Evolution of the Taiwan Mountain Belt: Petrol. Geol. Taiwan, v. 27, p. 15-35.
Lu, C. Y., and Malavieille, J. (1994) Oblique Convergence, Indentation and Rotation Tectonics in the Taiwan Mountain Belt - Insights from Experimental Modeling: Earth and Planetary Science Letters, v. 121, no. 3-4, p. 477-494.
Lu, C. Y., Chang, K. J., Jeng, F. S., and Jian, W. T. (1998) Impact of basement high on the structure and kinematics of the western Taiwan thrust wedge: insights from sandbox models. : Terrestrial Atmospheric and Oceanic Sciences , v. 9, no. 533-550.
Lu, C. Y., Chang, K. J., Malavieille, J., Chan, Y. C., P, Chang. C., and Lee, J. C. (2001) Structural Evolution in the southeastern Central Range, Taiwan: Western Pacific Earth Sciences, v. 1, no. 2, p. 213-226.
Lundberg, N., Reed, D. L., Liu, C. S., and Lieske, J. (1992) Structural controls on orogenic sedimentation, submarine Taiwan colliosion: Acta Geologica Taiwanica, v. 30, p. 131-140.
Lundberg, N., Reed, D. L., Liu, C. S., and Lieske, J. (1997) Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan: Tectonophysics, v. 274, no. 1-3, p. 5-23.
Mair, K., Frye, K. M., and Marone, C. (2002) Influence of grain characteristics on the friction of granular shear zones: J. Geophys. Res., v. 107, no. B10, p. 2219.
Malavieille, J. (1984) Modelisation experimentale des chevauchements imbriques: Application aux chaines de montagnes: Geologique de France Bulletin, v. 26, p. 129-136.
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C. Y., Liu, C. S., and Schnurle, P. (2002) Geology of the arc-continent collision in Taiwan: Marine observations and geodynamic model: Geol. Soc. Am. , v. Special paper 358, no. 187-211.
Malavieille, J., and Trullenque, G. (2009) Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling: Tectonophysics, v. 466, no. 3-4, p. 377-394.
Matsubara, Y., and Seno, T. (1980) Paleogeographic reconstruction of the Philippine Sea at 5 my BP: Earth and Planetary Science Letters ,v. 51, p. 406-414.
McClay, K. R., and Whitehouse, P. S. (2004) Analog modeling of doubly vergent thrust wedges: Thrust tectonics and hydrocarbon systems:AAPG Memoir, v. 82, p. 184-206.
Minster, J. B. a. J., T.H. (1979) Rotation vectors for the Philippine and Rivera plates: Eos, Trans: Amer. Geophys. Union, v. 60, p. 598.
Mulugeta, G. (1988) Squeeze-box in a centrifuge: Tectonophysics, v. 148, no. 3-4, p. 323-335.
Paulcke, W. (1912) Das Experiment in der Geologie, Festschrift zur Feier des funfundfundfzigsten Geburtstages Seiner Koniglichen Hohiet des GroBherzogs Friedrich II: Karlsruhe, p. 744-108.
Peltzer, G., and Tapponnier, P. (1988) Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision- an Experimental Approach: Journal of Geophysical Research-Solid Earth and Planets, v. 93, no. B12, p. 15085-15117.
Ranalli, G. (2001) Experimental tectonics: from Sir James Hall to the present: Journal of Geodynamics, v. 32, no. 1-2, p. 65-76.
Ramberg, H. (1967) Gravity, Deformation and the Earth's Crust, Academic Press, London and New York
Ramberg, H. (1981) Gravity, Deformation and the Earth's Crust, 2ed, Academic Press, London and New York
Reed, D. L., Lundberg, N., Liu, C.-S., and B.-Y., K. (1992) Structural relation along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics: Acta Geologica Taiwanica, v. 30, p. 150-122.
Richard, M., Bellon, H., Maury, R. C., Barrier, E., and Juang, W. S. (1986) Miocene to recent &c-alkaline volcanism in eastern Taiwan: K-Ar ages and petrography: Tectonophysits, v. 125, p. 87-102.
Sarewitz, D. R., and Karig, D. E. (1986) Geologic evolution of Western Mindoro Island and the Mindoro Suture Zone, Philippines: Journal of Southeast Asian earth sciences, v. 1, no. 117-141.
Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden, A., Daniel, J. M., Hoth, S., Koyi, H., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., DelVentisette, C., Elder Brady, J., Hoffmann-Rothe, A., Mengus, J. M., Montanari, D., and Nilforoushan, F. (2006) Analogue benchmarks of shortening and extension experiments. In: S.J.H. Buiter and G. Schreurs (Editors), Analogue and Numerical Modelling of Crustal-Scale Processes: Geological Society, London, Special Publication, London., p. 1-27.
Seno, T. (1977) The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate: Tectonophysics ,v. 42, no. 209-226.
Seno, T., and Maruyama, S. (1984) Paleogeographic reconstruction and origin of the Philippine Sea: Tectonophysics, v. 102, no. 53-84.
Seno, T., Moriyama, T., Stein, S., Woods, D. F., Demets, C., Argus, D., and Gordon, R. (1987) Redetermination of the Philippine Sea Plate motion: Eos Trans. AGU, v. 68, no. 1474.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan: Mem. Geol. Soc. China, v. 4, p. 67-89.
Suppe, J. (1984) Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan: Mem. Geol. Soc. China, v. 6, p. 21-33.
Suppe, J. (2007) Absolute fault and crustal strength from wedge tapers: Geology, v. 35, no. 12, p. 1127-1130.
Susanne, B., and Guido, S. (2008) 2008 ANALOGUE-NUMERICAL MODEL COMPARISONS.
Tang, J. C., and Chemenda, A. I. (2000) Numerical modelling of arc-continent collision: application to Taiwan: Tectonophysics, v. 325, no. 1-2, p. 23-42.
Tapponnier, P., Peltzer, G., Ledain, A. Y., Armijo, R., and Cobbold, P. (1982) Propagating Extrusion Tectonics in Asia - New Insights from Simple Experiments with Plasticine: Geology, v. 10, no. 12, p. 611-616.
Taylor, B., and Hayes, D. E. (1980) The tectonic evolution of the South China Sea Basin: Geophysical Monograph, v. 23.
Taylor, B., and Hayes, D. E. (1983) Origin And History Of The South China Sea Basin: Geophysical Monograph v. 27, p. 23-56.
Teng, L. S. (1987) Stratigraphic records of the late cenozoic Penglai orogeny of Taiwan: Yanjiū baogao - Guoli Taiwān daxue. Lǐxueyuan dizhixue xi, v. 205-224.
Teng, L. S. (1990) Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan: Tectonophysics, v. 183, p. 67-76.
Tseng, C. H., Hu, J. C., Chan, Y. C., Chu, H. T., Lee, J. F., Wei, J. Y., and Lu, C. Y. (2008) Non-Catastrophic landslides induced by the Mw 7.6 Chi-Chi earthquake in central Taiwan as revealed by PIV analysis: Tectonophysics., doi: 10.1016/j.tecto.2007.11.019.
Twiss, R. J. & E. M. Moores (1992) Structural geology, W. H. Freeman and Company, New York.
Vilotte, J. P., Daignieres, M., and Madariaga, R. (1982) Numerical Modeling of Intraplate Deformation - Simple Mechanical Models of Continental Collision: Journal of Geophysical Research, v. 87, no. Nb13, p. 709-728.
Willett, S. D., Beaumont, C., and Fullsack, P. (1993) Mechanical model for the tectonics of doubly vergent compressional orogens: Geology, v. 21, no. 4, p. 371-374.
Yeh, E. C.(2004) Structural evolution of slate belts:Examples from Taiwan And Eastern Pennsylvania, Doctoe Thesis of Pennsylvania State Unversuty, p.p191.
Yu, S. B., and Chen, H. Y. (1994) Global Positional System meansurements of crustal deformation in the Taiwan arc continent collision zone: Terrestr. Atmos. Oceanic Sci., v. 5, p. 477-498.
朱傚祖 (1991) 玉山地區逆衝斷層之研究。中國地質學會會刊第34卷,第4期, 第199-232頁。
張國楨 (1998) 台灣西部基盤高區對鄰近主要新構造的影響之三維模擬。國立台
灣大學地質科學研究所碩士論文,共134頁。
陳麗雯 (2006) 台灣東南海域弧前盆地之構造演化特徵。國立台灣大學海洋研究所碩士論文,共100頁。
曾佳漢 (2006) 應用質點影像測速技術分析集集地震於台灣中部所引發之非遽變山崩。國立台灣大學地質科學研究所碩士論文,共79頁。
潘昌志 (2009) 以砂箱模型來探討增積岩體的前緣增積作用。國立台灣大學海洋
研究所碩士論文,共105頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6297-
dc.description.abstract台灣島位於歐亞板塊與菲律賓海板塊斜向聚合帶上,為世界活躍的造山帶之一。台灣南部海域包含了呂宋島弧的弧前基磐,而此弧前基磐隱沒作用,亦對應著台灣島的板塊運動自隱沒作用轉變為碰撞的過渡帶。本研究中嘗試利用物理砂箱模型進行構造重演,以模擬台灣南部海域弧前基磐隱沒作用以及增積楔形體的弧前增積系統之循環。接著定義弧前增積系統發育時,各個活動階段增積楔形體的幾何特徵以及空間分佈,更進一步利用質點影像速度分析,分析實驗中質點瞬間變化、位移場向量以及剪應變量化等分析。
從模擬結果發現,增積楔形體的發展受到底部摩擦力不同的影響,斷層生長的幾何方式也有所差異。當底部為低摩擦力時,則斷層幾何型式為前緣增積與滑脫作用;而底部為高摩擦力時,會造成深部物質與底拖帶產生互鎖現象,造成俯衝作用,幾何型式則形成覆疊形式的逆衝斷層。此外,PIV分析結果,說明增積楔形體在初始逆衝斷層發育階段呈現應變增強;深部俯衝階段應力則呈現應變減弱。從剪應變的結果中了解,表面的侵蝕作用會使斷層發生脫序行為,以及影響斷層發展的週期。整個台灣的造山運動由板塊的隱沒增積揭開序幕,當弧前基磐開始隱沒時,造成新造山增積楔形體發展於後阻體與弧前基磐之間,並與原先的楔形體產生碰撞,衍生出兩個切過碰撞帶的背衝斷層構造。且藉由此背衝斷層可能用以解釋台灣東南部地區目前所觀察到地層倒轉,位於海床底下的物質亦可能透過此背衝作用的機制,出露至地表形成野外所觀察到的混同層。本研究主要觀察到的結果說明了台灣造山帶初期的板塊構造演化。首先,因板塊隱沒作用而造成增積楔形體的發展,繼之,在初期碰撞時,增積楔形體底部弧前基磐的隱沒拖曳作用造成了兩次碰撞現象。本研究的驗證結果幫助我們瞭解台灣大地構造的演變,為利用砂箱模擬探討構造演化的一項實例。
zh_TW
dc.description.abstractThe active Taiwan orogenic belt is considered as formed by the Eurasian plate obliquely converging with the Philippine Sea plate. In southern offshore of Taiwan, the oceanic lithosphere subducted eastward beneath the Philippine Sea Plate along the Manila Trench. In southern Taiwan there was a slice of Luzon forearc basement as a consequence of the transition from oceanic to incipient continental subduction. In this study, we designed the experiments by the sandbox of physical models to examine the detail impact of forearc lithosphere subduction on forearc basin and accretionary wedge deformation. We also demonstrate that the geometry of the deformation and spatial distribution of surface uplift can be used to the currently active phase within a frontal accretion cycle. After that, we analyzed the displacement field of particles by PIV (Particle Image Velocimetry) to quantify the vector field and the shear strain of the model result.
Our experiment results showed that the friction could be affected the fault geometry. In low friction basement, the fault geometry favors develop as push-out decollement, on the contrary, in the high friction basement, the fault geometry prefers develop underthrusting and imbricate structure. From the PIV result, We infer that the three phases of a frontal accretion cycle are controlled by the strain hardening and softening processes. The stress-strain evolution will harden in the thrust initiation phase and soften in the underthrusting phase. Furthermore, our modeling result from PIV suggests that the surface erosion promotes the possibility of out-of-sequence thrusts.
The orogeny of Taiwan is starting when the plates subducted to product the accretionary wedge. When the forearc basement began to subduct under the Luzon arc, the new orogenic wedge was grown at the boundary between the backstop and the forearc basement. The previous accretionary wedge and the orogenic wedge were accreted to develop major backthrust and backfolding in the forearc basin. In our opinion, this major backthrust and back fold at retro-wedge probably consistents with the field observation of the overturn structures in the southeastern Central Range. And the material beneath the seafloor could derived from the thrust and became part of the Melange.
In summary, our study results demonstrate early stage of Taiwan orogenic evolution. At the first phase, plates subducting form the accretionary wedge; at the second phase of the initial collision, the forearc basement is subducted under the arc to cause double collisions, which is consistent with the early stage of Taiwan orogenic evolution. Those helped us to understand more about Taiwan tectonic evolution and built a good example for the application of sandbox simulation.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:25:21Z (GMT). No. of bitstreams: 1
ntu-102-R99224116-1.pdf: 61608068 bytes, checksum: 128af7f293c1b71a797be36777fce171 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 研究目的及動機 1
1.2 章節內容 4
第二章 前人研究 5
2.1 研究區域背景 5
2.2 增積楔形體研究 19
第三章 模型模擬及尺度考量基本因素 24
3.1 模型種類 24
3.2 基本模型理論 25
3.2.1 物理維度與模型相互關係 25
3.2.2 相似性 28
3.3 實驗模型材料 30
3.4 模型相似性的選取與決定 32
第四章 研究方法 34
4.1 砂箱歷史沿革 34
4.2 本研究模型設計 38
4.3 實驗材料性質分析 40
4.4 實驗步驟 45
4.4.1 石英砂染色處理 45
4.4.2 砂與玻璃間邊界效應 45
4.4.3 實驗過程 46
4.4.4 表面侵蝕作用 47
4.5 質點影像速度分析 48
4.5.1 PIV簡介 48
4.5.2 PIV資料處理流程 49
4.6 統計前緣斷層生長週期 57
第五章 實驗結果 58
5.1 砂箱影像分析結果 58
5.1.1 底部高摩擦力實驗 59
5.1.2 底部低摩擦力實驗 59
5.1.3 底部高摩擦力侵蝕實驗 59
5.1.4 底部低摩擦力侵蝕實驗 59
5.2 PIV影像分析結果 65
5.2.1 底部高摩擦力實驗- PIV分析結果 66
5.2.2 底部低摩擦力實驗- PIV分析結果 68
5.2.3 底部高摩擦力侵蝕實驗- PIV分析結果 70
5.2.4 底部低摩擦力侵蝕實驗- PIV分析結果 72
5.3 弧前基磐隱沒作用 75
5.3.1 低度摩擦力實驗 77
5.3.2 低度摩擦力侵蝕實驗 80
5.3.3 高度摩擦力實驗 84
5.3.4 高度摩擦力侵蝕實驗 88
5.4 現今野外觀察及砂箱細部模擬結果 92
第六章 討論 100
6.1 前緣增積循環幾何特徵 100
6.2 前緣增積循環應力分布特徵 103
6.3 底部摩擦參數影響討論 105
6.4 前緣斷層生長週期 106
6.5 侵蝕作用影響斷層脫序活動 108
6.6 弧前基磐的隱沒作用 109
6.7 台灣造山帶相關研究發展 114
第七章 結論 118
參考文獻 119
dc.language.isozh-TW
dc.title由砂箱模型透視台灣南部弧前基磐隱沒機制及前緣增積系統zh_TW
dc.titleThe mechanism of forearc basement subduction and frontal accretional cycle in southern Taiwan: Insights from sandbox modelingen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱傚祖(Hao-Tsu Chu),張國楨(Kuo-Jen Chang),陳柔妃(Rou-fei Chen),葉恩肇(En-Chao Yeh)
dc.subject.keyword砂箱,前緣基磐,造山增積楔形體,質點影像速度分析,台灣,zh_TW
dc.subject.keywordSandbox,forearc basement,orogenic wedge,PIV,Taiwan,en
dc.relation.page126
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-05-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf60.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved