Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王珮玲
dc.contributor.authorWan-Ling Sunen
dc.contributor.author孫宛鈴zh_TW
dc.date.accessioned2021-06-16T16:17:11Z-
dc.date.available2015-02-21
dc.date.copyright2013-02-21
dc.date.issued2013
dc.date.submitted2013-02-05
dc.identifier.citationCanfield, D. E., E. Kristensen, and B. Thamdrup (2005), The methane cycle, Advances in Marine Biology, 48, 383-418.
Conrad, R. (2009), The global methane cycle: recent advances in understanding the microbial processes involved, Environmental Microbiology Reports, 1(5), 285-292.
Dimitrov, L. I. (2002), Mud volcanoes—the most important pathway for degassing deeply buried sediments, Earth-Science Reviews, 59(1), 49-76.
Doerfert, S. N., M. Reichlen, P. Iyer, M. Wang, and J. G. Ferry (2009), Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam, International journal of systematic and evolutionary microbiology, 59(5), 1064-1069.
Elberson, M., and K. Sowers (1997), Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae, International journal of systematic bacteriology, 47(4), 1258-1261.
Gray, N. D., A. Sherry, S. R. Larter, M. Erdmann, J. Leyris, T. Liengen, J. Beeder, and I. M. Head (2009), Biogenic methane production in formation waters from a large gas field in the North Sea, Extremophiles, 13(3), 511-519.
Jones, W. J., M. Paynter, and R. Gupta (1983), Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment, Archives of microbiology, 135(2), 91-97.
Knittel, K., and A. Boetius (2009), Anaerobic oxidation of methane: progress with an unknown process, Annual review of microbiology, 63, 311-334.
Lai, M., and R. P. Gunsalus (1992), Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302, Journal of Bacteriology, 174(22), 7474-7477.
Lai, M. C., and C. J. Shih (2001), Characterization of Methanococcus voltaei strain P2F9701a: a new methanogen isolated from estuarine environment, Current microbiology, 42(6), 432-437.
Lazar, C. S., R. J. Parkes, B. A. Cragg, S. L'Haridon, and L. Toffin (2011), Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea, Environmental Microbiology, 13(8), 2078-2091.
Liu, Y., and W. B. Whitman (2008), Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Annals of the New York Academy of Sciences, 1125(1), 171-189.
Lyimo, T. J., A. Pol, M. S. M. Jetten, and H. J. M. Op den Camp (2009), Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain, FEMS Microbiology Letters, 291(2), 247-253.
Lyimo, T. J., A. Pol, H. J. O. den Camp, H. R. Harhangi, and G. D. Vogels (2000), Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment, International journal of systematic and evolutionary microbiology, 50(1), 171-178.
McGenity, T. (2010), Methanogens and methanogenesis in hypersaline environments, Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, Heidelberg, 665-680.
McGenity, T. J., R. T. Gemmell, W. D. Grant, and H. Stan‐Lotter (2001), Origins of halophilic microorganisms in ancient salt deposits, Environmental Microbiology, 2(3), 243-250.
Mochimaru, H., H. Tamaki, S. Hanada, H. Imachi, K. Nakamura, S. Sakata, and Y. Kamagata (2009), Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field, International journal of systematic and evolutionary microbiology, 59(4), 714-718.
Mori, K., H. Yamamoto, Y. Kamagata, M. Hatsu, and K. Takamizawa (2000), Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site, International journal of systematic and evolutionary microbiology, 50(5), 1723-1729.
Moune, S., N. Manac'h, A. E. Hirschler, P. Caumette, J. C. Willison, and R. Matheron (1999), Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter, International journal of systematic bacteriology, 49(1), 103-112.
Ollivier, B., P. Caumette, J. L. Garcia, and R. Mah (1994), Anaerobic bacteria from hypersaline environments, Microbiological reviews, 58(1), 27-38.
Ollivier, B., M. L. Fardeau, J. L. Cayol, M. Magot, B. K. C. Patel, G. Prensier, and J. L. Garcia (1998), Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well, International journal of systematic bacteriology, 48(3), 821-828.
Oremland, R. S., and S. Polcin (1982), Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments, Applied and environmental microbiology, 44(6), 1270-1276.
Oremland, R. S., R. P. Kiene, I. Mathrani, M. J. Whiticar, and D. R. Boone (1989), Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide, Applied and environmental microbiology, 55(4), 994-1002.
Oren, A. (1990), Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments, Antonie van Leeuwenhoek, 58(4), 291-298.
Oren, A. (1999), Bioenergetic aspects of halophilism, Microbiology and Molecular Biology Reviews, 63(2), 334-348.
Oren, A. (2011), Thermodynamic limits to microbial life at high salt concentrations, Environmental Microbiology, 13(8), 1908-1923.
Reeburgh, W. (2007), Oceanic methane biogeochemistry, Chemical reviews, 107(2), 486.
Simankova, M. V., S. N. Parshina, T. P. Tourova, T. V. Kolganova, A. J. B. Zehnder, and A. N. Nozhevnikova (2001), Methanosarcina lacustris sp. nov., a New Psychrotolerant Methanogenic Archaeon from Anoxic Lake Sediments, Systematic and applied microbiology, 24(3), 362-367.
Sowers, K. R., and J. G. Ferry (1983), Isolation and Characterization of a Methylotrophic Marine Methanogen, Methanococcoides methylutens gen. nov., sp. nov, Applied and environmental microbiology, 45(2), 684-690.
Sun, C. H., S. C. Chang, C. L. Kuo, J. C. Wu, P. H. Shao, and J. N. Oung (2010), Origins of Taiwan’s mud volcanoes: Evidence from geochemistry, Journal of Asian Earth Sciences, 37(2), 105-116.
Waldron, P. J., S. T. Petsch, A. M. Martini, and K. Nusslein (2007), Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter, Applied and environmental microbiology, 73(13), 4171-4179.
Whitman, W. B., and C. Jeanthon (2006), The sequencing of representative genes of the methane-producing archaea in the order Methanococcales suggests that this lineage is ancient and possesses a high degree of genetic diversity. For example, the mesophile Methanococcus, The Prokaryotes: Vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes, 3, 257-273.
Yang, T. F., G. H. Yeh, C. C. Fu, C. C. Wang, T. F. Lan, H. F. Lee, C. H. Chen, V. Walia, and Q. C. Sung (2004), Composition and exhalation flux of gases from mud volcanoes in Taiwan, Environmental Geology, 46(8), 1003-1011.
Yeh, G. H., T. F. Yang, J. C. Chen, Y. G. Chen, and S. R. Song (2005), Fluid geochemistry of mud volcanoes in Taiwan, Mud Volcanoes, Geodynamics and Seismicity, 227-237.
Zengler, K., H. H. Richnow, R. Rossello-Mora, W. Michaelis, and F. Widdel (1999), Methane formation from long-chain alkanes by anaerobic microorganisms, Nature, 401(6750), 266-269.
Zepp Falz, K., C. Holliger, R. Grosskopf, W. Liesack, A. Nozhevnikova, B. Muller, B. Wehrli, and D. Hahn (1999), Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland), Applied and environmental microbiology, 65(6), 2402-2408.
林悅婷,2009,台灣西南部關子嶺泥泉之微生物代謝多樣性研究,國立臺灣大學海洋研究所碩士論文,共 79 頁。
張永欣,2011,台灣東部雷公火泥火山之微生物甲烷循環,國立台灣大學地質科學系暨研究所碩士論文,共111頁。
陳韻如,2012,台灣西南部關仔嶺溫泉微生物生成甲烷作用造成之同位素分化與族群結構關係,國立台灣大學地質科學系暨研究所碩士論文,共106頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62976-
dc.description.abstract陸域泥火山被認為是甲烷排放的最重要的天然來源之一,前人研究顯示在表層陸域泥火山的甲烷循環來自生物與微生物的交互作用,在現地環境中的甲烷產生量可能遠超過地下深部熱裂解由泥火山釋出的甲烷,因而增加了甲烷的排放。由於噴泥在地表堆積之後,地表不同程度的蒸發作用使得氯離子濃度提高,有利於較耐鹽或嗜鹽的甲烷產生菌的生存,隨著季節變化與曝曬,溫度也又所變化,因此本研究利用雷公火泥火山的噴泥泉進行甲烷產生菌的富化培養實驗,使用不同種類的前驅物 (precursors) (氫氣/二氧化碳、醋酸、甲醇與甲胺)與不同的鹽度 (從現地鹽度至最高 2000 mM) 以及溫度範圍 (從現地溫度最高至 50 oC),並隨著培養
時間進行甲烷濃度的監測,以瞭解噴泥中甲烷產生菌隨環境變化的甲烷產生潛力。
富化培養結果顯示,培養於室溫的所有添加前驅物之樣品皆能產生甲烷,甲烷產生速率隨著鹽度提高而明顯趨緩。添加氫氣/二氧化碳之樣品最耐鹽 (氯離子濃度為 2040 mM),其次是添加甲醇與甲胺之樣品 (氯離子濃度分別為 1824 及 1593 mM),而添加醋酸樣品可適應生長的鹽度較低 (氯離子濃度為 1168 mM)。培養於 40 oC 現地鹽度 (氯離子濃度約 300 mM) 下,所有添加前驅物之樣品皆能被快速富化而產生甲烷,而於 50 oC 培養中,只有添加氫氣/二氧化碳之樣品能被刺
激而產生甲烷。
分子生物分析方面,利用末端螢光標定限制酵素片段長度多型性 (Terminal
restriction fragment length polymorphism, T-RFLP) 方法,區分不同前驅物與鹽度下樣品中的甲烷產生菌基因之異同處。將 T-RFLP 與 16S rDNA 定序分析結果對應下,培養於室溫與 40 oC 的樣品最接近的序列有Methanococcus spp.、Methanosarcina spp.、Methanocalculus spp.、Methanolobus spp. 以及 Methanococcoides spp.,除了Methanococcus spp. 外,其餘菌種被報導過皆能適應高於或等於氯離子濃度 1000 mM 或是可生存於 40 oC。
整體而言,在較高鹽度下添加氫氣/二氧化碳或甲基類之樣品比起添加醋酸之樣品,能更耐鹽而活躍的生長產生甲烷。這些較耐鹽的產甲烷菌於鹽度變化下或於蒸發作用旺盛的表層陸域泥火山中,能更能適應環境而生存著。當考量到陸域泥火山中整體的甲烷逸散量時,這些耐鹽的產甲烷菌成為一個重要的考量因素。
zh_TW
dc.description.abstractTerrestrial mud volcano is thought to be one of the most important natural sources of methane emission. Previous studies have shown that methane cycling in terrestrial mud volcanoes involves a complex reaction network driven by the interactions between subsurface and surface abiotic and microbial processes.In situ methanogenesis appears to produce methane at quantities exceeding those of deeply-sourced thermogenic methane and the capacities of anaerobic methanotrophy at shallow depth levels, thereby contributing significantly to the methane emission. Various degrees of evaporation at surface also lead to the enhancement of chloride concentrations in pore water, favoring the proliferation of halo-tolerant and/or halophilic methanogens. The goal of this study is to investigate the extent of methanogenesis in terrestrial mud volcanoes by incubating mud slurries with various precursors (H2/CO2,acetate, methanol, and methylamine) at different salinities (up to 2000 mM) and temperatures (up to 50 oC). Methane concentrations were monitored through time and molecular analyses were applied to investigate the changes of methanogenic communities.
Growth of methanogenic enrichment cultures was bserved for all investigated precursors at room temperature. The methane production rates and yields declined significantly at higher salinities. Methanogens utilizing H2/CO2 could tolerate highest chlorite concentration (2040 mM). Methyl-compounds (methanol and methylamine) could be used for methane production with the chlorite concentration up to 1824 and 1593 mM. Acetate-utilizing methanogenesis proceeded at chlorite concentration less than 1168 mM. At 40 oC, methanogenesis was performed with all kinds of precursors at the in situ salinity, but only H2-utilizing methanogenesis was observed at 50 oC.
Analyses of terminal restriction fragment length polymorphism (T-RFLP) for 16S rDNA genes revealed various patterns upon different precursors and salinities. The T-RFLP results combined with clone library analyses indicated that major RFs recovered from incubations at room temperature and 40 oC were represented by sequences affiliated with Methanococcus spp., Methanosarcina spp., Methanocalculus spp., Methanolobus spp. and Methanococcoides spp., and except to Methanococcus-related members, all above were capable to growth at salinities greater than 1000 mM or at 40 oC.
Overall, methanogens utilizing H2/CO2 or methyl-compounds appear to be capable of actively producing methane at salinities greater than that for acetate-utilizing methanogens. These methanogens derived from muddy fluids might adapt to the fluctuation of salinity or extremely high salinity induced by the surface evaporation in terrestrial mud volcanoes. While considering the overall methane emission from terrestrial mud volcanoes, we have to consider the role of these halo-tolerant methanogens.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:17:11Z (GMT). No. of bitstreams: 1
ntu-102-R99241319-1.pdf: 3701813 bytes, checksum: 409c776101412b583b464ce5121c0581 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝...................................................... i
摘要 .................................................... ii
Abstract ............................................... iii
目錄...................................................... v
圖目錄 .................................................. vii
表目錄 ................................................. viii
第一章 緒論.................................................1
1.1.全球甲烷循環.............................................1
1.2.微生物生成甲烷作用 ...................................... 1
1.2.1.甲烷產生菌的種類與代謝反應 ............................. 2
1.2.2.甲烷產生菌的分布特性 .................................. 3
1.2.3.高鹽環境下的甲烷產生菌................................. 4
1.3.泥火山中的甲烷產生菌 .................................... 5
1.4.研究動機與目的 ......................................... 6
第二章 研究方法 ............................................ 8
2.1採樣 .................................................. 8
2.1.1採樣地點與方式 ........................................ 8
2.1.2培養基準備 ........................................... 8
2.2.甲烷產生菌的富化培養 ................................... 10
2.2.1.培養樣品準備 ........................................ 10
2.2.2.甲烷與氯離子濃度測量 ................................. 10
2.3.微生物族群結構分析 ..................................... 13
2.3.1. 末端螢光標定限制酵素片段長度多型性分析 (Terminal restriction fragment length polymorphism, T-RFLP) ......................................................... 14
2.3.1.1.培養樣品基因體 DNA萃................................ 14
2.3.1.2.聚合酶連鎖反應 (polymerase chain reaction,PCR)..... 14
2.3.1.3.純化聚合酶連鎖反應產物 .............................. 14
2.3.1.4.酵素酶切反應 (digestion) .......................... 15
2.3.1.5.基因定型分析(genotyping)........................... 15
2.3.2.建立微生物 16S rDNA 選殖基因庫 (16S rDNA clone library)................................................. 15
2.3.2.1.純化聚合酶連鎖反應產物............................... 15
2.3.2.2.接合作用 (ligation)............................... 16
2.3.2.3.轉型作用 (transformation)......................... 16
2.3.2.4.以菌落為模板進行聚合酶連鎖反應 (colony PCR)........... 16
2.3.2.5.定序分析.......................................... 16
2.3.2.6.序列片段與選殖基因庫資料對比與分析..................... 16
第三章 實驗結果............................................ 18
3.1.富化培養結果........................................... 18
3.1.1.第一次採樣之富化培養結果............................... 18
3.1.2.第二次採樣之富化培養結果............................... 32
3.1.2.1.升溫培養下現地鹽度結果............................... 32
3.2.分子生物分析結果........................................ 49
3.2.1.T-RFLP 分析結果..................................... 49
3.2.2.定序分析結果......................................... 53
第四章 討論............................................... 56
4.1.鹽度與溫度對甲烷產生菌之影響.............................. 56
4.1.1.使用氫氣/二氧化碳之甲烷產生菌........................... 56
4.1.2.使用醋酸之甲烷產生菌.................................. 57
4.1.3.使用甲基類之甲烷產生菌................................. 59
4.2.T-RFLP 與 16S rDNA 定序分析方法之比較................... 63
4.3.培養果與現地環境之關係................................... 63
第五章 結論............................................... 65
參考文獻.................................................. 66
dc.language.isozh-TW
dc.subject雷公火泥火山zh_TW
dc.subject甲烷zh_TW
dc.subject甲烷產生作用zh_TW
dc.subject鹽度zh_TW
dc.subjectMethanogenesisen
dc.subjectmud volcanoen
dc.subjectMethaneen
dc.subjectSalinityen
dc.title台灣東部雷公火泥火山噴泥中微生物產甲烷作用與鹽度及溫度變化之關係zh_TW
dc.titleSalinity and Temperature Constraints on Microbial Methanogenesis in the Lei-Gong-Huo Mud Volcano of Eastern Taiwanen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林立虹,蘇志杰,廖秀娟
dc.subject.keyword雷公火泥火山,甲烷,甲烷產生作用,鹽度,zh_TW
dc.subject.keywordmud volcano,Methane,Methanogenesis,Salinity,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2013-02-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved