Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62960
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳政鴻(Cheng-Hung Wu)
dc.contributor.authorYwh-Leh Chouen
dc.contributor.author周育樂zh_TW
dc.date.accessioned2021-06-16T16:16:32Z-
dc.date.available2026-01-31
dc.date.copyright2021-03-08
dc.date.issued2021
dc.date.submitted2021-02-03
dc.identifier.citationAbedini, A., Li, W., Badurdeen, F., Jawahir, I. S. (2020). A metric-based framework for sustainable production scheduling. Journal of Manufacturing Systems, 54, 174-185.
Alguwaizani, A., Hansen, P., Mladenović, N., Ngai, E. (2011). Variable neighborhood search for harmonic means clustering. Applied Mathematical Modelling, 35(6), 2688-2694.
Alpaydin, E. (2020). Introduction to machine learning. MIT press.
Azizoglu, M., Kondakci, S. K., Köksalan, M. (1997). Bicriteria scheduling: Minimizing flowtime and maximum earliness on a single machine. In Multi-criteria analysis (pp. 279-288). Springer, Berlin, Heidelberg.
Bechikh, S., Kessentini, M., Said, L. B., Ghédira, K. (2015). Preference incorporation in evolutionary multi-objective optimization: a survey of the state-of-the-art. In Advances in Computers (Vol. 98, pp. 141-207). Elsevier.
Boroojeni, K. G., Amini, M. H., Bahrami, S., Iyengar, S. S., Sarwat, A. I., Karabasoglu, O. (2017). A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electric Power Systems Research, 142, 58-73.
Bougain, S., Gerhard, D., Nigischer, C., Uĝurlu, S. (2015). Towards energy management in production planning software based on energy consumption as a planning resource. Procedia CIRP, 26, 139-144.
Bruzzone, A. A., Anghinolfi, D., Paolucci, M., Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462.
Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B. (2017). Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access, 6, 6505-6519.
Chen, C. Y., Liao, C. J. (2011). A linear programming approach to the electricity contract capacity problem. Applied mathematical modeling, 35(8), 4077-4082.
Chen, T. L., Cheng, C. Y., Chou, Y. H. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290(1), 813-836.
Chien, C. F., Hong, T. Y., Guo, H. Z. (2017). A conceptual framework for “Industry 3.5” to empower intelligent manufacturing and case studies. Procedia Manufacturing, 11, 2009-2017.
Chien, C. F., Wang, H. K., Fu, W. H. (2018). Industry 3.5 Framework of an Advanced Intelligent Manufacturing System: Case Studies from Semiconductor Intelligent Manufacturing. Management Review, 37(3), 105-121.
Chen, C. Y., Liao, C. J. (2011). A linear programming approach to the electricity contract capacity problem. Applied mathematical modeling, 35(8), 4077-4082.
Chou, Y. L., Lin, T. Y., Wu, J. Z., Wu, C. H. (2020a). An Interactive Method for Multi-Criteria Dispatching Problems with Unknown Preference Functions. Computers Industrial Engineering, 106462.
Chou, Y. L., Yang, J. M., Wu, C. H. (2020b). An energy-aware scheduling algorithm under maximum power consumption constraints. Journal of Manufacturing Systems, 57, 182-197.
Dargie, W. (2014). A stochastic model for estimating the power consumption of a processor. IEEE Transactions on Computers, 64(5), 1311-1322.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley Sons
Egri, P., Váncza, J. (2013, September). Efficient mechanism for aggregate demand prediction in the smart grid. In German Conference on Multi-agent System Technologies (pp. 250-263). Springer, Berlin, Heidelberg.
Fang, K., Uhan, N., Zhao, F., Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240.
Filimonova, A. A., Kazarinov, L. S., Barbasova, T. A. (2015). Dispatching control of industrial facility power consumption. Energy Procedia, 83, 111-120.
Fowler, J. W., Gel, E. S., Köksalan, M. M., Korhonen, P., Marquis, J. L., Wallenius, J. (2010). Interactive evolutionary multi-objective optimization for quasi-concave preference functions. European Journal of Operational Research, 206(2), 417-425.
Gallego-Castillo, C., Bessa, R., Cavalcante, L., Lopez-Garcia, O. (2016). On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power. Energy, 113, 355-365.
Gao, K. (2015). Meta-heuristics for scheduling flexible job shop problems with constraints. Ph.D., NANYANG Technology University.
Garey, M. R., Johnson, D. S. (1978). ``Strong'' NP-Completeness Results: Motivation, Examples, and Implications. Journal of the ACM (JACM), 25(3), 499-508.
Gen, M., Zhang, W., Lin, L., Yun, Y. (2017). Recent advances in hybrid evolutionary algorithms for multi-objective manufacturing scheduling. Computers Industrial Engineering, 112, 616-633.
Giret, A., Trentesaux, D., Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140.
Ho, W. (2008). Integrated analytic hierarchy process and its applications–A literature review. European Journal of operational research, 186(1), 211-228.
Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of operational research, 167(3), 592-623.
Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., Elhoseny, M. (2019). Extended genetic algorithm for solving open-shop scheduling problem. Soft computing, 23(13), 5099-5116.
Hosseinioun, P., Kheirabadi, M., Tabbakh, S. R. K., Ghaemi, R. (2020). A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm. Journal of Parallel and Distributed Computing.
Hu, R., Zhu, X., Zhu, Y., Gan, J. (2020). Robust SVM with adaptive graph learning. World Wide Web, 23(3), 1945-1968.
Jeon, J., Taylor, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. Journal of the American Statistical Association, 107(497), 66-79.
Jiang, H., Yi, J., Chen, S., Zhu, X. (2016). A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly. Journal of Manufacturing Systems, 41, 239-255.
Jiang, H., Yi, J., Chen, S., Zhu, X. (2016). A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly. Journal of Manufacturing Systems, 41, 239-255.
Jordan, M. I., Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
McLaren, J., Gagnon, P., Zimny-Schmitt, D., DeMinco, M., Wilson, E. (2017). Maximum demand charge rates for commercial and industrial electricity tariffs in the United States (No. 74). National Renewable Energy Laboratory-Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory.
Kahneman, D., Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In Handbook of the fundamentals of financial decision making: Part I, pp. 99-127.
Kanet, J. J., Sridharan, V. (1998). The value of using scheduling information in planning material requirements. Decision Sciences, 29(2), 479-496.
Kar, I., Parida, R. R., Das, H. (2016, March). Energy-aware scheduling using genetic algorithm in cloud data centers. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 3545-3550. IEEE.
Kilian, L. (2008). The economic effects of energy price shocks. Journal of Economic Literature, 46(4), 871-909.
Lee, C. Y., Chien, C. F. (2014). Stochastic programming for vendor portfolio selection and order allocation under delivery uncertainty. OR Spectrum, 36(3), 761-797.
Lei, D. (2009). Multi-objective production scheduling: a survey. The International Journal of Advanced Manufacturing Technology, 43(9-10), 926.
Lei, D., Li, M., Wang, L. (2018). A two-phase meta-heuristic for multi-objective flexible job shop scheduling problem with total energy consumption threshold. IEEE Transactions on Cybernetics, 49(3), 1097-1109.
Li, K., Zhang, X., Leung, J. Y. T., Yang, S. L. (2016). Parallel machine scheduling problems in green manufacturing industry. Journal of Manufacturing Systems, 38, 98-106.
Liu, Y., Dong, H., Lohse, N., Petrovic, S. (2016). A multi-objective genetic algorithm for optimization of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272.
Luo, S., Zhang, L., Fan, Y. (2019). Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization. Journal of Cleaner Production, 234, 1365-1384.
Mansouri, S. A., Aktas, E., Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788.
Malczewski, J. (2018). Multicriteria analysis. Comprehensive Geographic Information Systems, 197-217
Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., Valipour, A. (2015). Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516-571.
Martinez, S. M., Escribano, A. H., Carretón, M. C., Mestre, V. G., Lázaro, E. G. (2014). Wind Power Forecast Error Probabilistic Model Using Markov Chains. In Environment, Energy and Climate Change II, pp. 55-70. Springer, Cham.
McLaren, J., Gagnon, P., Zimny-Schmitt, D., DeMinco, M., Wilson, E. (2017). Maximum demand charge rates for commercial and industrial electricity tariffs in the United States (No. 74). National Renewable Energy Laboratory-Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory.
Mehrabian, A., Tavakkoli-Moghaddam, R., Khalili-Damaghani, K. (2017). Multi-objective routing and scheduling in flexible manufacturing systems under uncertainty. Iranian Journal of Fuzzy Systems, 14(2), 45-77.
Michaloski, J. L., Shao, G., Arinez, J., Lyons, K., Leong, S., Riddick, F. (2011, April). Analysis of sustainable manufacturing using simulation for integration of production and building service. In Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, pp. 93-101.
Mouzon, G., Yildirim, M. B. (2008). A framework to minimize total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116.
Mouzon, G., Yildirim, M. B., Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of production research, 45(18-19), 4247-4271.
Nasrabadi, N., Dehnokhalaji, A., Korhonen, P., Wallenius, J. (2019). Using convex preference cones in multiple criteria decision making and related fields. Journal of Business Economics, 89(6), 699-717.
Neugebauer, R., Wabner, M., Rentzsch, H., Ihlenfeldt, S. (2011). Structure principles of energy efficient machine tools. CIRP Journal of Manufacturing Science and Technology, 4(2), 136-147.
Nie, L., Wang, X., Pan, F. (2019, April). A game-theory approach based on genetic algorithm for flexible job shop scheduling problem. In Journal of Physics: Conference Series (Vol. 1187, No. 3, p. 032095). IOP Publishing.
Nitisiri, K., Gen, M., Ohwada, H. (2019). A parallel multi-objective genetic algorithm with learning based mutation for railway scheduling. Computers Industrial Engineering, 130, 381-394.
Ocampo-Martinez, C. (2019). Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies. Journal of Manufacturing Systems, 52, 131-145.
Ouni, A., Kessentini, M., Sahraoui, H. (2014). Multiobjective optimization for software refactoring and evolution. In Advances in Computers (Vol. 94, pp. 103-167). Elsevier.
Paolucci, M., Anghinolfi, D., Tonelli, F. (2017). Facing energy-aware scheduling: a multi-objective extension of a scheduling support system for improving energy efficiency in a molding industry. Soft Computing, 21(13), 3687-3698.
Paprocka, I. (2019). The model of maintenance planning and production scheduling for maximizing robustness. International Journal of Production Research, 57(14), 4480-4501.
Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems, Springer.
Rager, M., Gahm, C., Denz, F. (2015). Energy-oriented scheduling based on evolutionary algorithms. Computers Operations Research, 54, 218-231.
Renna, Paolo (2020). Peak Electricity Demand Control of Manufacturing Systems by Gale-Shapley Algorithm with Discussion on Open Innovation Engineering. Journal of Open Innovation: Technology, Market, and Complexity 6.2: 29.
Reza Hejazi, S., Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: a review. International Journal of Production Research, 43(14), 2895-2929.
Rondeau, T. W., Bostian, C. W. (2009). Cognitive techniques: Physical and link layers. In Cognitive Radio Technology (pp. 223-264). Academic Press
Saberi-Aliabad, H., Reisi-Nafchi, M., Moslehi, G. (2020). Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs. Journal of Cleaner Production, 249, 119393.
Shan, C., Gong, S., McOwan, P. W. (2009). Facial expression recognition based on local binary patterns: A comprehensive study. Image and vision Computing, 27(6), 803-816.
Shishira, S. R., Kandasamy, A., Chandrasekaran, K. (2016). Survey on meta heuristic optimization techniques in cloud computing. In 2016 international conference on advances in computing, communications and informatics (ICACCI), pp. 1434-1440. IEEE.
Simon H.A. (1990). Bounded Rationality. In: Eatwell J., Milgate M., Newman P. (eds) Utility and Probability. The New Palgrave. Palgrave Macmillan, London
Soares, L. J., Medeiros, M. C. (2008). Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data. International Journal of Forecasting, 24(4), 630-644.
Tan, W., Khoshnevis, B. (2000). Integration of process planning and scheduling-a review. Journal of Intelligent Manufacturing, 11(1), 51-63.
Tirkel, I., Rabinowitz, G. (2011). Quality performance modeling in a deteriorating production system with partially available inspection. In Operations Research Proceedings 2010 (pp. 397-402). Springer, Berlin, Heidelberg.
Tristo, G., Bissacco, G., Lebar, A., Valentinčič, J. (2015). Real time power consumption monitoring for energy efficiency analysis in micro EDM milling. The International Journal of Advanced Manufacturing Technology, 78(9-12), 1511-1521.
Wang, H., Jiang, Z., Wang, Y., Zhang, H., Wang, Y. (2018). A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal of Cleaner Production, 188, 575-588.
Wang, J., Jiang, C., Zhang, H., Ren, Y., Chen, K. C., Hanzo, L. (2020). Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Communications Surveys Tutorials.
Wang, J. J., Jing, Y. Y., Zhang, C. F., Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and sustainable energy reviews, 13(9), 2263-2278.
Wang, J. J., Wang, L. (2019). Decoding methods for the flow shop scheduling with peak power consumption constraints. International Journal of Production Research, 57(10), 3200-3218.
Wang, L., Li, Q., Zhang, B., Ding, R., Sun, M. (2019). Robust multi-objective optimization for energy production scheduling in microgrids. Engineering Optimization, 51(2), 332-351.
Wang, N., Fu, Y., Wang, H. (2019). A meta-heuristic algorithm for integrated optimization of dynamic resource allocation planning and production scheduling in parallel machine system. Advances in Mechanical Engineering, 11(12), 1687814019898347.
Wang, Y. C., Wang, M. J., Lin, S. C. (2017). Selection of cutting conditions for power constrained parallel machine scheduling. Robotics and Computer-Integrated Manufacturing, 43, 105-110.
Wein, L. M. (1992). On the relationship between yield and cycle time in semiconductor wafer fabrication. IEEE transactions on semiconductor manufacturing, 5(2), 156-158.
Wu, C. H., Yao, Y. C., Dauzere-Peres, S., Yu, C. J. (2020). Dynamic dispatching and preventive maintenance for parallel machines with dispatching-dependent deterioration. Computers Operations Research, 113, 104779.
Xia, T., Xi, L., Du, S., Xiao, L., Pan, E. (2018). Energy-oriented maintenance decision-making for sustainable manufacturing based on energy saving window. Journal of Manufacturing Science and Engineering, 140(5).
Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., Liu, B. (2018). Interactive multi-objective optimization: A review of the state-of-the-art. IEEE Access, 6, 41256-41279.
Yan, J., Li, L. (2013). Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471.
Yang, C., Lan, S., Shen, W., Huang, G. Q., Wang, L. (2019). Software-defined cloud manufacturing in the context of industry 4.0. In 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp. 184-190. IEEE.
Yang, K., Gao, Y., Liang, L., Yao, B., Wen, S., Chen, G. (2020,). Towards Factorized SVM with Gaussian Kernels over Normalized Data. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1453-1464. IEEE.
Yu, T., Zhu, C., Chang, Q., Wang, J. (2019). Imperfect corrective maintenance scheduling for energy efficient manufacturing systems through online task allocation method. Journal of Manufacturing Systems, 53, 282-290.
Yugma, C., Blue, J., Dauzère-Pérès, S., Obeid, A. (2015). Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook. Journal of Scheduling, 18(2), 195-205.
Zeng, Y., Che, A., Wu, X. (2018). Bi-objective scheduling on uniform parallel machines considering electricity cost. Engineering Optimization, 50(1), 19-36.
Zhang, H., Xie, J., Ge, J., Zhang, Z., Zong, B. (2019). A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. European Journal of Operational Research, 272(3), 868-878.
Zhang, R., Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375.
Zhang, S., Che, A., Wu, X., Chu, C. (2018). Improved mixed-integer linear programming model and heuristics for bi-objective single-machine batch scheduling with energy cost consideration. Engineering optimization, 50(8), 1380-1394.
Zhang, W., Ding, J., Wang, Y., Zhang, S., Xiong, Z. (2019). Multi-perspective collaborative scheduling using extended genetic algorithm with interval-valued intuitionistic fuzzy entropy weight method. Journal of Manufacturing Systems, 53, 249-260.
Zheng, J. N., Chien, C. F., Wu, J. Z. (2018). Multi-objective demand fulfillment problem for solar cell industry. Computers Industrial Engineering, 125, 688-694.
Zhou, Z., Botterud, A., Wang, J., Bessa, R. J., Keko, H., Sumaili, J., Miranda, V. (2013). Application of probabilistic wind power forecasting in electricity markets. Wind Energy, 16(3), 321-338.
Zhou, Z., Li, F., Zhu, H., Xie, H., Abawajy, J. H., Chowdhury, M. U. (2020). An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments. Neural Computing and Applications, 32(6), 1531-1541.
Zionts, S., Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22(6), 652-663.
Zionts, S., Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519-529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62960-
dc.description.abstract本研究係針對未知決策者偏好並考慮隨機能耗限制下之智慧多準則生產規劃進行探討,以協助決策者有效找到滿足其多準則偏好的決策。由於未考量隨機能耗限制下的定性生產排程本身就是NP-hard問題,同時隨機問題在實務上並沒有一個很有效的求解方法;因此,本研究提出一項三階段的解決方案,包含1) 隨機能耗機率模型建構, 2) 未知決策者偏好下之互動式多準則最佳化演算法, 3) 考慮機台隨機能耗機率限制下的細部排程演算法。
本研究提出之未知決策者偏好下之互動式多準則最佳化演算法(iMOPUP),主要是在偏好函數形態不明下,協助決策者準確並有效地在多個相互衝突的決策目標下找到最適解。在本研究中這個增強的決策支持方法,被應用來制定最合適的生產派工策略,在未知決策者偏好下,所提出的互動式演算法透過與決策者進行少量的互動,即使在決策者無法有效辨識方案間的差異時,也能夠有效地協助決策者找出平衡相互衝突的製造準則下之最佳策略。
本研究提出之考慮生產機台能耗的細部排程啟發式演算法(SFDS),目的是要同時提高生產效率和能源效率。這個強化的啟發式排程方法,能夠在滿足工廠和電廠簽訂的最大額定功率下,不超約並有效地制定最佳的細部生產排程。透過隨機能耗機率模型,來模式化工件與機台間相依的能耗關係並捕捉機器能耗的隨機特徵,將這些能耗特徵應用於細部生產排程最佳化的過程中,從而避免超約。
在考慮能耗限制並應用生產現場收集的數據驗證下,iMOPUP及SFDS兩項演算法表現都優於其他演算法。數值模擬及分析的結果也顯示本研究所提出的演算法不論在求解品質及計算時間上都有優越的表現。從每次與決策者互動中,iMOPUP都會嘗試學習決策者的決策偏好並提供對應的方案。數值分析結果顯示,iMOPUP能夠只透過與決策者約十次的互動,就找到在線性或二次偏好函數下的近似最佳解。在二次和線性偏好函數下,iMOPUP與最佳解之間的平均差距分別僅小於2%和1%。SFDS在最高能耗限制下,平均排程總製造時間保持在最佳解的0.6%以內。在規模大的問題中,SFDS的排程總製造時間與最佳解之間的平均差距僅為0.02%;此外,當問題的規模增加時,SFDS所需的計算時間依然保持穩定。
zh_TW
dc.description.abstractThis research investigates multi-criteria production planning problems under unknown user preference functions, to help decision-makers (DMs) find solutions that meet their multi-criteria preferences. As the deterministic version of the dispatching or scheduling problem without stochastic energy consumption constraints is NP-hard, no practical-sized stochastic problem can likely be solved efficiently. Thus, the proposed method is designed to decompose into 1) stochastic energy modeling, 2) interactive method for multi-criteria optimization problems (MOP) under Unknown preference functions, and 3) detailing of scheduling problems of machines under probabilistic energy constraints.
An interactive method for MOP under Unknown Preference (iMOPUP) is proposed to help DMs find solutions accurately and efficiently under multiple conflicting objectives with the unidentified form of the preference function. This enhanced decision support method was adopted to determine the most preferred dispatching policy that balances the conflicting manufacturing criteria through a small number of interactions with unknown DMs’ preference, provided that DMs are indistinguishable when selecting the preferred solution among alternatives. An energy-aware Shop Floor Detailed Scheduling heuristics (SFDS) is also proposed to enhance both production and energy efficiency. This enhanced heuristic was investigated through the production scheduling problems under maximum power consumption constraints. Probabilistic models are built to model dispatching-dependent and capture the stochastic characteristics of machine energy consumption. The energy consumption characteristics are then used to optimize the scheduling and thereby avoid exceeding the energy usage constraints.
The proposed methods, iMOPUP and SFDS under power consumption constraint, were validated through real manufacturing data and results reveal the proposed methods outperform other methods. Numerical results also suggest the superiority of proposed methods in terms of solution quality and computational time. The proposed iMOPUP can address the continuous criteria space without requiring the feasible nondominated solution set in advance. In every interaction, iMOPUP attempts to learn the DMs’ preferences and provides the corresponding alternatives. The numerical study reveals that iMOPUP finds near-optimal solutions under linear or quadratic utility functions through less than a dozen interactions with DMs. The average gap between the iMOPUP solutions and true optimal is merely less than 2% and 1% under quadratic and linear utility functions, respectively. The proposed SFDS, while constraining the probability of violating peak energy consumption constraints, the makespan of the scheduling solution remains within 0.6% of the optimal solution on average. In large-scale problems, while the total energy consumption is optimal, the gap between SFDS and the optimal solution of the makespan is merely 0.02% on average. Moreover, the required computational time remains stable while the problem size increases.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:16:32Z (GMT). No. of bitstreams: 1
U0001-0302202108121100.pdf: 2584332 bytes, checksum: da0b5521db7ec2ef1635bb5dbc53f271 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文摘要……………………………………………………………..……………….…1
Abstract……………………………………………………………...……………….…2
1. Introduction……………….……………………….......................………….……….4
2. Literature Review.………………………………….......................………….……11
3. Research Objectives and Problem Formulation…...……………………………...20
4. Methodology………………………………………..………………………...….….23
4.1 Stochastic Energy Consumption Modeling………………………………………………...……….27
4.2 Interactive Method for Multi-Criteria Optimization Problems under Unknown Preference………..31
4.2.1 Illustration of iMOPUP in a 3 Criteria Example…………………..……..…………………...........40
4.3 Energy-aware Shop Floor Detailed Scheduling Heuristics…………………………………………...….46
4.3.1 The Probability of Total Energy Consumption Violating the Maximum Usage Constraint……..48
4.3.2 Steps of SFDS Heuristics……………………………………………………………………….……....49
5. Validation and Numerical Study……………………………………...…….……53
5.1 Validation on Interactive Method for MOP under Unknown Preference ……………………...……53
5.1.1 Numerical Study on Step-size (ω)………………………………………….…………………...……..54
5.1.2 Numerical Study on Indistinguishable Threshold (α)……………………..………………...………57
5.1.3 Numerical Study on Interactive Method for MOP under Unknown Preference………………….60
5.1.3.1 Model Superiority under Linear Preference Function……………………………….……….61
5.1.3.2 Model Superiority under Quadratic Preference Function…………………………..………..64
5.1.4 A Pilot Study on the Learning Ability of iMOPUP with Machine Learning………………………66
5.2 Effectiveness of Shop Floor Detailed Scheduling Heuristic Method……………………..………...70
5.3 Validation on Shop Floor Detailed Scheduling Heuristic Method………………………...………...72
5.3.1 Validation on SFDS under Small-Scale Production Environment……………………...……….72
5.3.2 Validation on SFDS under Large-Scale Production Environment……………………………….73
5.3.2.1 Problem Instance Set 1 (PIS1): Six Machines with Increasing Number of Jobs…….……..75
5.3.2.2 Problem Instance Set 2 (PIS2): SFDS Performance in Large-scale Systems…………..…78
6. Conclusions and Future Research……………………………………………….....81
Reference………………………………………………………………………………85
APPENDIX……………………………………………………………………….…..92
A.1 Linear Programming Model for Criteria Space Solutions…………………………………….........92
A.2 Linear Programming Model for Pareto Front Solutions…………………………………………....94
A.3 Linear Programming Model for Global Optimal……………………………………………...……96
dc.language.isoen
dc.subject多準則決策zh_TW
dc.subject能源耗用zh_TW
dc.subject互動式啟發式演算法zh_TW
dc.subject生產派工及生產排程zh_TW
dc.subject未知偏好函數zh_TW
dc.subject決策偏好學習zh_TW
dc.subject非相關平行機台zh_TW
dc.subjectUnrelated parallel machineen
dc.subjectDispatching and Schedulingen
dc.subjectInteractive heuristicsen
dc.subjectMulti-criteria decision makingen
dc.subjectEnergy consumptionen
dc.subjectPreference Learningen
dc.subjectUnknown preference functionsen
dc.title考慮隨機能耗限制及未知偏好之智慧多準則生產規劃zh_TW
dc.titleMulti-Criteria Production Planning with Unknown User Preferences and Stochastic Energy Consumption Constrainsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.author-orcid0000-0001-5177-4872
dc.contributor.oralexamcommittee洪一薰(I-Hsuan Hong),黃奎隆(Kwei-Long Huang),藍俊宏(Jakey Blue),喻奉天(Vincent F. Yu),吳吉政(Jei-Zheng Wu)
dc.subject.keyword多準則決策,能源耗用,互動式啟發式演算法,生產派工及生產排程,未知偏好函數,決策偏好學習,非相關平行機台,zh_TW
dc.subject.keywordMulti-criteria decision making,Energy consumption,Interactive heuristics,Dispatching and Scheduling,Unknown preference functions,Preference Learning,Unrelated parallel machine,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202100429
dc.rights.note有償授權
dc.date.accepted2021-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
U0001-0302202108121100.pdf
  Restricted Access
2.52 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved