Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62954
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏秀(Po-Hsiu Kuo)
dc.contributor.authorHung-Hsin Chenen
dc.contributor.author陳弘昕zh_TW
dc.date.accessioned2021-06-16T16:16:18Z-
dc.date.available2015-03-04
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-02-05
dc.identifier.citationAdrian, T. E., Bloom, S. R., Bryant, M. G., Polak, J. M., Heitz, P. H., & Barnes, A. J. (1976). Distribution and release of human pancreatic polypeptide. Gut, 17(12), 940–944.
Aguilar-Salinas, C. A., Garcia, E. G., Robles, L., Riano, D., Ruiz-Gomez, D. G., Garcia-Ulloa, A. C., Melgarejo, M. A., et al. (2008). High Adiponectin Concentrations Are Associated with the Metabolically Healthy Obese Phenotype. Journal of Clinical Endocrinology & Metabolism, 93(10), 4075–4079.
Asakawa, A., Inui, A., Yuzuriha, H., Ueno, N., Katsuura, G., Fujimiya, M., Fujino, M. A., et al. (2003). Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology, 124(5), 1325–1336.
Badman, M. K. (2005). The Gut and Energy Balance: Visceral Allies in the Obesity Wars. Science, 307(5717), 1909–1914.
Baggio, L. L., & Drucker, D. J. (2007). Biology of Incretins: GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157.
Baker, M., Gaukrodger, N., Mayosi, B. M., Imrie, H., Farrall, M., Watkins, H., Connell, J. M. C., et al. (2005). Association between common polymorphisms of the proopiomelanocortin gene and body fat distribution: a family study. Diabetes, 54(8), 2492–2496.
Benoit, S. C., Air, E. L., Coolen, L. M., Strauss, R., Jackman, A., Clegg, D. J., Seeley, R. J., et al. (2002). The catabolic action of insulin in the brain is mediated by melanocortins. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(20), 9048–9052.
Berglund, E. D., Vianna, C. R., Donato, J., Jr., Kim, M. H., Chuang, J.-C., Lee, C. E., Lauzon, D. A., et al. (2012). Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. Journal of Clinical Investigation, 122(3), 1000–1009.
Biddinger, S. B., Hernandez-Ono, A., Rask-Madsen, C., Haas, J. T., Aleman, J. O., Suzuki, R., Scapa, E. F., et al. (2008). Hepatic Insulin Resistance Is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis. Cell Metabolism, 7(2), 125–134.
Bolter, C. J., & Chefurka, W. (1990). Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Archives of biochemistry and biophysics, 278(1), 65–72.
Broberger, C., Johansen, J., Johansson, C., Schalling, M., & Hokfelt, T. (1998). The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 15043–15048.
Brochu, M., Tchernof, A., Dionne, I. J., Sites, C. K., Eltabbakh, G. H., Sims, E. A., & Poehlman, E. T. (2001). What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? Journal of Clinical Endocrinology & Metabolism, 86(3), 1020–1025.
Brosnan, M. E., & Brosnan, J. T. (2009). Hepatic glutamate metabolism: a tale of 2 hepatocytes. American Journal of Clinical Nutrition, 90(3), 857S–861S.
Calle, E. E., Thun, M. J., Petrelli, J. M., Rodriguez, C., & Heath, C. W. (1999). Body-mass index and mortality in a prospective cohort of U.S. adults. New England Journal of Medicine, 341(15), 1097–1105.
Calori, G., Lattuada, G., Piemonti, L., Garancini, M. P., Ragogna, F., Villa, M., Mannino, S., et al. (2010). Prevalence, Metabolic Features, and Prognosis of Metabolically Healthy Obese Italian Individuals: The Cremona Study. Diabetes care, 34(1), 210–215.
Cao, L.-C., Honeyman, T. W., Cooney, R., Kennington, L., Scheid, C. R., & Jonassen, J. A. (2004). Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney international, 66(5), 1890–1900.
Carr, R. D., Larsen, M. O., Jelic, K., Lindgren, O., Vikman, J., Holst, J. J., Deacon, C. F., et al. (2010). Secretion and Dipeptidyl Peptidase-4-Mediated Metabolism of Incretin Hormones after a Mixed Meal or Glucose Ingestion in Obese Compared to Lean, Nondiabetic Men. Journal of Clinical Endocrinology & Metabolism, 95(2), 872–878.
Carr, R. D., Larsen, M. O., Winzell, M. S., Jelic, K., Lindgren, O., Deacon, C. F., & Ahren, B. (2008). Incretin and islet hormonal responses to fat and protein ingestion in healthy men. AJP: Endocrinology and Metabolism, 295(4), E779–E784.
Challis, B. G., Pritchard, L. E., Creemers, J. W. M., Delplanque, J., Keogh, J. M., Luan, J., Wareham, N. J., et al. (2002). A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Human molecular genetics, 11(17), 1997–2004.
Chen, H. Y. (2004). Orexigenic Action of Peripheral Ghrelin Is Mediated by Neuropeptide Y and Agouti-Related Protein. Endocrinology, 145(6), 2607–2612.
Cheng, S., Rhee, E. P., Larson, M. G., Lewis, G. D., McCabe, E. L., Shen, D., Palma, M. J., et al. (2012). Metabolite Profiling Identifies Pathways Associated With Metabolic Risk in Humans. Circulation, 125(18), 2222–2231.
Choi, H. K., Atkinson, K., Karlson, E. W., & Curhan, G. (2005). Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Archives of internal medicine, 165(7), 742–748.
Coll, A. P. (2007). Effects of pro-opiomelanocortin (POMC) on food intake and body weight: mechanisms and therapeutic potential? Clinical science (London, England : 1979), 113(4), 171–182.
Connor, S. C., Hansen, M. K., Corner, A., Smith, R. F., & Ryan, T. E. (2010). Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Molecular BioSystems, 6(5), 909-921.
Coutinho, T., Turner, S., Peyser, P., Bielak, L., Sheedyii, P., & Kullo, I. (2007). Associations of Serum Uric Acid With Markers of Inflammation, Metabolic Syndrome, and Subclinical Coronary Atherosclerosis. American Journal of Hypertension, 20(1), 83–89.
Culleton, B. F., Larson, M. G., Kannel, W. B., & Levy, D. (1999). Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Annals of internal medicine, 131(1), 7–13.
Cummings, D. E. (2004). Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. AJP: Endocrinology and Metabolism, 287(2), E297–E304.
Donner, T. W., Magder, L. S., & Zarbalian, K. (2010). Dietary supplementation with d-tagatose in subjects with type 2 diabetes leads to weight loss and raises high-density lipoprotein cholesterol. Nutrition Research, 30(12), 801–806.
Druce, M. R. (2004). Minireview: Gut Peptides Regulating Satiety. Endocrinology, 145(6), 2660–2665.
Eaton, S., Bartlett, K., & Pourfarzam, M. (1996). Mammalian mitochondrial beta-oxidation. Biochemical Journal, 320 ( Pt 2), 345–357.
Eissele, R., Goke, R., Willemer, S., Harthus, H. P., Vermeer, H., Arnold, R., & Goke, B. (1992). Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. European journal of clinical investigation, 22(4), 283–291.
Ekblad, E., & Sundler, F. (2002). Distribution of pancreatic polypeptide and peptide YY. Peptides, 23(2), 251–261.
Elahi, D., McAloon-Dyke, M., Fukagawa, N. K., Meneilly, G. S., Sclater, A. L., Minaker, K. L., Habener, J. F., et al. (1994). The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regulatory peptides, 51(1), 63–74.
Fang, J., & Alderman, M. H. (2000). Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA: the journal of the American Medical Association, 283(18), 2404–2410.
Fernandez-Alvarez, J., Conget, I., Rasschaert, J., Sener, A., Gomis, R., & Malaisse, W. J. (1994). Enzymatic, metabolic and secretory patterns in human islets of type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 37(2), 177–181.
Ferrer, J., Aoki, M., Behn, P., Nestorowicz, A., Riggs, A., & Permutt, M. A. (1996). Mitochondrial glycerol-3-phosphate dehydrogenase. Cloning of an alternatively spliced human islet-cell cDNA, tissue distribution, physical mapping, and identification of a polymorphic genetic marker. Diabetes, 45(2), 262–266.
Ford, E. S., Giles, W. H., & Dietz, W. H. (2002). Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA: the journal of the American Medical Association, 287(3), 356–359.
Gagliardi, A. C. M., Miname, M. H., & Santos, R. D. (2009). Uric acid: A marker of increased cardiovascular risk. Atherosclerosis, 202(1), 11–17.
Gall, W. E., Beebe, K., Lawton, K. A., Adam, K.-P., Mitchell, M. W., Nakhle, P. J., Ryals, J. A., et al. (2010). α-Hydroxybutyrate Is an Early Biomarker of Insulin Resistance and Glucose Intolerance in a Nondiabetic Population. (M. Federici, Ed.)PLoS ONE, 5(5), e10883.
Goessling, W., Massaro, J. M., Vasan, R. S., D'Agostino, R. B., Ellison, R. C., & Fox, C. S. (2008). Aminotransferase Levels and 20-Year Risk of Metabolic Syndrome, Diabetes, and Cardiovascular Disease. Gastroenterology, 135(6), 1935–1944.
Gu, S., A, J., Wang, G., Zha, W., Yan, B., Zhang, Y., Ren, H., et al. (2009). Metabonomic profiling of liver metabolites by gas chromatography-mass spectrometry and its application to characterizing hyperlipidemia. Biomedical Chromatography, 24(3), 245-252.
Gutzwiller, J. P. (2004). Glucagon-Like Peptide 1 Induces Natriuresis in Healthy Subjects and in Insulin-Resistant Obese Men. Journal of Clinical Endocrinology & Metabolism, 89(6), 3055–3061.
Hamer, M., & Stamatakis, E. (2012). Metabolically Healthy Obesity and Risk of All-Cause and Cardiovascular Disease Mortality. Journal of Clinical Endocrinology & Metabolism, 97(7), 2482–2488.
Hermanussen, M., & Tresguerres, J. A. F. (2003). Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. Journal of perinatal medicine, 31(6), 489–495.
Hohmann, S., Buchmann, A. F., Witt, S. H., Rietschel, M., Jennen-Steinmetz, C., Schmidt, M. H., Esser, G., et al. (2012). Increasing association between a neuropeptide Y promoter polymorphism and body mass index during the course of development. Pediatric obesity, 7(6), 453–460.
Holzer, P., Reichmann, F., & Farzi, A. (2012). Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides, 46(6), 261–274.
Houstis, N., Rosen, E. D., & Lander, E. S. (2006). Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 440(7086), 944–948.
Hsu, F. F., Bohrer, A., Wohltmann, M., Ramanadham, S., Ma, Z., Yarasheski, K., & Turk, J. (2000). Electrospray ionization mass spectrometric analyses of changes in tissue phospholipid molecular species during the evolution of hyperlipidemia and hyperglycemia in Zucker diabetic fatty rats. Lipids, 35(8), 839–854.
Hwang, L.-C., Bai, C.-H., & Chen, C.-J. (2006). Prevalence of Obesity and Metabolic Syndrome in Taiwan. Journal of the Formosan Medical Association, 105(8), 626–635.
Jaakkola, U., Kallio, J., Heine, R. J., Nijpels, G., t' Hart, L. M., Maassen, J. A., Bouter, L. M., et al. (2007). Neuropeptide Y polymorphism significantly magnifies diabetes and cardiovascular disease risk in obesity: the Hoorn Study. European Journal of Clinical Nutrition, 63(1), 150–152.
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2011). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), D109–D114.
Karelis, A. D. (2004). Metabolic and Body Composition Factors in Subgroups of Obesity: What Do We Know? Journal of Clinical Endocrinology & Metabolism, 89(6), 2569–2575.
Karelis, A. D. (2005). The Metabolically Healthy but Obese Individual Presents a Favorable Inflammation Profile. Journal of Clinical Endocrinology & Metabolism, 90(7), 4145–4150.
Karvonen, M. K., Pesonen, U., Koulu, M., Niskanen, L., Laakso, M., Rissanen, A., Dekker, J. M., et al. (1998). Association of a leucine(7)-to-proline(7) polymorphism in the signal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels. Nature medicine, 4(12), 1434–1437.
Kim, J. A., Wei, Y., & Sowers, J. R. (2008). Role of Mitochondrial Dysfunction in Insulin Resistance. Circulation Research, 102(4), 401–414.
Kim, J. Y., Park, J. Y., Kim, O. Y., Ham, B. M., Kim, H.-J., Kwon, D. Y., Jang, Y., et al. (2010). Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). Journal of proteome research, 9(9), 4368–4375.
Kinzig, K. P., Coughlin, J. W., Redgrave, G. W., Moran, T. H., & Guarda, A. S. (2007). Insulin, glucose, and pancreatic polypeptide responses to a test meal in restricting type anorexia nervosa before and after weight restoration. AJP: Endocrinology and Metabolism, 292(5), E1441–E1446.
Kolodziej, L. R., Paleolog, E. M., & Williams, R. O. (2010). Kynurenine metabolism in health and disease. Amino Acids, 41(5), 1173–1183.
Konrad, R. J., Major, C. D., & Wolf, B. A. (1994). Diacylglycerol hydrolysis to arachidonic acid is necessary for insulin secretion from isolated pancreatic islets: sequential actions of diacylglycerol and monoacylglycerol lipases. Biochemistry, 33(45), 13284–13294.
Korner, J., & Leibel, R. (2003). To eat or not to eat - how the gut talks to the brain. New England Journal of Medicine, 349(10), 926-928.
Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., et al. (2008). Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metabolism, 7(1), 45–56.
Lage, R., Vazquez, M. J., Varela, L., Saha, A. K., Vidal-Puig, A., Nogueiras, R., Dieguez, C., et al. (2010). Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. The FASEB Journal, 24(8), 2670–2679.
Lee, Y. C., Chang, H. H., Chiang, C. L., Liu, C. H., Yeh, J. I., Chen, M. F., Chen, P. Y., et al. (2011). Role of Perivascular Adipose Tissue-Derived Methyl Palmitate in Vascular Tone Regulation and Pathogenesis of Hypertension. Circulation, 124(10), 1160–1171.
Lenaz, G. (2001). The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB life, 52(3-5), 159–164.
Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of medicinal food, 5(1), 23–36.
Lu, Y., Levin, G. V., & Donner, T. W. (2007). Tagatose, a new antidiabetic and obesity control drug. Diabetes, obesity & metabolism, 10(2), 109-134.
Lutz, T. A. (2010). The role of amylin in the control of energy homeostasis. AJP: Regulatory, Integrative and Comparative Physiology, 298(6), R1475–R1484.
MacDonald, M. J. (1981). High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide. The Journal of biological chemistry, 256(16), 8287–8290.
Marini, M. A., Succurro, E., Frontoni, S., Hribal, M. L., Andreozzi, F., Lauro, R., Perticone, F., et al. (2007). Metabolically Healthy but Obese Women Have an Intermediate Cardiovascular Risk Profile Between Healthy Nonobese Women and Obese Insulin-Resistant Women. Diabetes care, 30(8), 2145–2147.
Martin, R. J. L., Savage, D. A., Carson, D. J., McKnight, A. J., Maxwell, A. P., & Patterson, C. C. (2011). Association analysis of proopiomelanocortin (POMC) haplotypes in type 1 diabetes in a UK population. Diabetes and Metabolism, 37(4), 298–304.
Masoudi kazemabad, A., Jamialahmadi, K., Moohebati, M., Mojarrad, M., Dehghan Manshadi, R., Akhlaghi, S., Ferns, G. A., et al. (2012). Neuropeptide Y Leu7Pro Polymorphism Associated With the Metabolic Syndrome and Its Features in Patients With Coronary Artery Disease. Angiology, 64(1), 40-45.
Meigs, J. B. (2006). Body Mass Index, Metabolic Syndrome, and Risk of Type 2 Diabetes or Cardiovascular Disease. Journal of Clinical Endocrinology & Metabolism, 91(8), 2906–2912.
Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., & Kahn, C. R. (2000). Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Molecular cell, 6(1), 87–97.
Michel, M. C., Beck-Sickinger, A., Cox, H., Doods, H. N., Herzog, H., Larhammar, D., Quirion, R., et al. (1998). XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacological Reviews, 50(1), 143–150.
Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H., Vockley, J., Toledo, F. G. S., & DeLany, J. P. (2009). Increased Levels of Plasma Acylcarnitines in Obesity and Type 2 Diabetes and Identification of a Marker of Glucolipotoxicity. Obesity, 18(9), 1695–1700.
Mihalik, S. J., Michaliszyn, S. F., Las Heras, de, J., Bacha, F., Lee, S., Chace, D. H., Dejesus, V. R., et al. (2012). Metabolomic Profiling of Fatty Acid and Amino Acid Metabolism in Youth With Obesity and Type 2 Diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes care, 35(3), 605–611.
Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215.
Miyawaki, K., Yamada, Y., Ban, N., Ihara, Y., Tsukiyama, K., Zhou, H., Fujimoto, S., et al. (2002). Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nature medicine, 8(7), 738–742.
Mokdad, A. H., Serdula, M. K., Dietz, W. H., Bowman, B. A., Marks, J. S., & Koplan, J. P. (1999). The spread of the obesity epidemic in the United States, 1991-1998. JAMA: the journal of the American Medical Association, 282(16), 1519–1522.
Muscelli, E., Mari, A., Casolaro, A., Camastra, S., Seghieri, G., Gastaldelli, A., Holst, J. J., et al. (2008). Separate Impact of Obesity and Glucose Tolerance on the Incretin Effect in Normal Subjects and Type 2 Diabetic Patients. Diabetes, 57(5), 1340–1348.
Nauck, M. A., Heimesaat, M. M., Orskov, C., Holst, J. J., Ebert, R., & Creutzfeldt, W. (1993a). Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. Journal of Clinical Investigation, 91(1), 301–307.
Nauck, M. A., Homberger, E., Siegel, E. G., Allen, R. C., Eaton, R. P., Ebert, R., & Creutzfeldt, W. (1986). Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. Journal of Clinical Endocrinology & Metabolism, 63(2), 492–498.
Nauck, M. A., Kleine, N., Orskov, C., Holst, J. J., Willms, B., & Creutzfeldt, W. (1993b). Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 36(8), 741–744.
Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., Haqq, A. M., et al. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9(4), 311–326.
Nilsen, R. M., Bjorke-Monsen, A.-L., Midttun, O., Nygard, O., Pedersen, E. R., Ulvik, A., Magnus, P., et al. (2012). Maternal Tryptophan and Kynurenine Pathway Metabolites and Risk of Preeclampsia. Obstetrics & Gynecology, 119(6), 1243–1250.
Niswender, K. D., Baskin, D. G., & Schwartz, M. W. (2004). Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends in Endocrinology & Metabolism, 15(8), 362–369.
Oberbach, A., Bluher, M., Wirth, H., Till, H., Kovacs, P., Kullnick, Y., Schlichting, N., et al. (2011). Combined Proteomic and Metabolomic Profiling of Serum Reveals Association of the Complement System with Obesity and Identifies Novel Markers of Body Fat Mass Changes. Journal of proteome research, 10(10), 4769–4788.
Obici, S., Feng, Z., Tan, J., Liu, L., Karkanias, G., & Rossetti, L. (2001). Central melanocortin receptors regulate insulin action. Journal of Clinical Investigation, 108(7), 1079–1085.
Okerson, T., Yan, P., Stonehouse, A., & Brodows, R. (2009). Effects of Exenatide on Systolic Blood Pressure in Subjects With Type 2 Diabetes. American Journal of Hypertension, 23(3), 334–339.
Olynyk, J. K., Knuiman, M. W., Divitini, M. L., Davis, T. M. E., Beilby, J., & Hung, J. (2009). Serum Alanine Aminotransferase, Metabolic Syndrome, and Cardiovascular Disease in an Australian Population, 104(7), 1715–1722.
Pataky, Z., Bobbioni-Harsch, E., & Golay, A. (2010). Open questions about metabolically normal obesity. International Journal of Obesity, 34(S2), S18–S23.
Pataky, Z., Makoundou, V., Nilsson, P., Gabriel, R. S., Lalic, K., Muscelli, E., Casolaro, A., et al. (2011). Metabolic normality in overweight and obese subjects. Which parameters? Which risks? International Journal of Obesity, 35(9), 1208–1215.
Poore, R. E., Hurst, C. H., Assimos, D. G., & Holmes, R. P. (1997). Pathways of hepatic oxalate synthesis and their regulation. The American journal of physiology, 272(1 Pt 1), C289–94.
Prada, P. O., Hirabara, S. M., Souza, C. T. de, Schenka, A. A., Zecchin, H. G., Vassallo, J., Velloso, L. A., et al. (2007). l-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. Diabetologia, 50(9), 1949–1959.
Preet, A., Karve, T., Rizk, N. & Cheema, A. (2012). Metabolomics: Approaches and Applications to Diabetes Research. Journal of Diabetes & Metabolism. S6-001
Ramanadham, S., Hsu, F. F., Bohrer, A., Nowatzke, W., Ma, Z., & Turk, J. (1998). Electrospray ionization mass spectrometric analyses of phospholipids from rat and human pancreatic islets and subcellular membranes: comparison to other tissues and implications for membrane fusion in insulin exocytosis. Biochemistry, 37(13), 4553–4567.
Reaven, G. (2004). The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinology and Metabolism Clinics of North America, 33(2), 283–303.
Ritov, V. B., Menshikova, E. V., He, J., Ferrell, R. E., Goodpaster, B. H., & Kelley, D. E. (2005). Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes, 54(1), 8–14.
Sainsbury, A. (2002). Y4 receptor knockout rescues fertility in ob/ob mice. Genes & Development, 16(9), 1077–1088.
Santoro, N. (2004). An Insertional Polymorphism of the Proopiomelanocortin Gene Is Associated with Fasting Insulin Levels in Childhood Obesity. Journal of Clinical Endocrinology & Metabolism, 89(10), 4846–4849.
Schindhelm, R. K., Dekker, J. M., Nijpels, G., Bouter, L. M., Stehouwer, C. D. A., Heine, R. J., & Diamant, M. (2007). Alanine aminotransferase predicts coronary heart disease events: A 10-year follow-up of the Hoorn Study. Atherosclerosis, 191(2), 391–396.
Schwartz, M. W., Sipols, A. J., Marks, J. L., Sanacora, G., White, J. D., Scheurink, A., Kahn, S. E., et al. (1992). Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology, 130(6), 3608–3616.
Semple, R. K., Sleigh, A., Murgatroyd, P. R., Adams, C. A., Bluck, L., Jackson, S., Vottero, A., et al. (2009). Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. Journal of Clinical Investigation.
Sookoian, S., & Pirola, C. J. (2012). Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World Journal of Gastroenterology, 18(29), 3775–3781.
Stefan, N., Kantartzis, K., Machann, J., Schick, F., Thamer, C., Rittig, K., Balletshofer, B., et al. (2008). Identification and characterization of metabolically benign obesity in humans. Archives of internal medicine, 168(15), 1609–1616.
Sutton, B. S., Langefeld, C. D., Williams, A. H., Norris, J. M., Saad, M. F., Haffner, S. M., & Bowden, D. W. (2005). Association of proopiomelanocortin gene polymorphisms with obesity in the IRAS family study. Obesity research, 13(9), 1491–1498.
Swierczynski, J., Sledzinski, T., Slominska, E., Smolenski, R., & Sledzinski, Z. (2008). Serum Phenylalanine Concentration as a Marker of Liver Function in Obese Patients Before and After Bariatric Surgery. Obesity Surgery, 19(7), 883–889.
Tan, C.-E., Ma, S., Wai, D., Chew, S.-K., & Tai, E.-S. (2004). Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes care, 27(5), 1182–1186.
Ternouth, A., Brandys, M. K., van der Schouw, Y. T., Hendriks, J., Jansson, J.-O., Collier, D., & Adan, R. A. (2011). Association study of POMC variants with body composition measures and nutrient choice. European Journal of Pharmacology, 660(1), 220–225.
Theodorakis, M. J. (2005). Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. AJP: Endocrinology and Metabolism, 290(3), E550–E559.
Thompson, N. M. (2003). Ghrelin and Des-Octanoyl Ghrelin Promote Adipogenesis Directly in Vivo by a Mechanism Independent of the Type 1a Growth Hormone Secretagogue Receptor. Endocrinology, 145(1), 234–242.
Tolle, V., & Low, M. J. (2007). In Vivo Evidence for Inverse Agonism of Agouti-Related Peptide in the Central Nervous System of Proopiomelanocortin-Deficient Mice. Diabetes, 57(1), 86–94.
Ueda, S., Yoshikawa, T., Katsura, Y., Usui, T., Nakao, H., & Fujimoto, S. (2009). Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. Journal of Endocrinology, 201(1), 151-159.
Ueno, N., Inui, A., Iwamoto, M., Kaga, T., Asakawa, A., Okita, M., Fujimiya, M., et al. (1999). Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology, 117(6), 1427–1432.
Velho, S., Paccaud, F., Waeber, G., Vollenweider, P., & Marques-Vidal, P. (2010). Metabolically healthy obesity: different prevalences using different criteria. European Journal of Clinical Nutrition, 64(10), 1043–1051. Nature Publishing Group.
Vinayavekhin, N., Homan, E., & Saghatelian, A. (2010). Exploring disease through metabolomics. ACS CHEMICAL BIOLOGY, 5(1), 91–103.
Wahl, S., Yu, Z., Kleber, M., Singmann, P., Holzapfel, C., He, Y., Mittelstrass, K., et al. (2012). Childhood Obesity Is Associated with Changes in the Serum Metabolite Profile. Obesity Facts, 5(5), 660–670.
Wang, C., Feng, R., Sun, D., Li, Y., Bi, X., & Sun, C. (2011). Metabolic profiling of urine in young obese men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS). Journal of Chromatography B, 879(27), 2871–2876.
Wang, F., Gelernter, J., Kranzler, H. R., & Zhang, H. (2012). Identification of POMC Exonic Variants Associated with Substance Dependence and Body Mass Index. (U. Rudolph, Ed.)PLoS ONE, 7(9), e45300.
Wang, Y., Liu, H., McKenzie, G., Witting, P. K., Stasch, J.-P., Hahn, M., Changsirivathanathamrong, D., et al. (2010). Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature medicine, 16(3), 279–285.
Wildman, R. P., Muntner, P., Reynolds, K., McGinn, A. P., Rajpathak, S., Wylie-Rosett, J., & Sowers, M. R. (2008). The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Archives of internal medicine, 168(15), 1617–1624.
Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, P. J., & Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiology & Behavior, 74(4-5), 683–701.
Williams, G., Harrold, J. A., & Cutler, D. J. (2007). The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proceedings of the Nutrition Society, 59(03), 385–396.
Woods, S. C. (2003). Gastrointestinal Satiety Signals I. An overview of gastrointestinal signals that influence food intake. AJP: Gastrointestinal and Liver Physiology, 286(1), G7–13.
Xia, J., & Wishart, D. S. (2010). MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26(18), 2342–2344.
Yang, H., Roth, C. M., & Ierapetritou, M. G. (2011). Analysis of Amino Acid Supplementation Effects on Hepatocyte Cultures Using Flux Balance Analysis. OMICS: A Journal of Integrative Biology, 15(7-8), 449–460.
Yerram, P., & Whaley-Connell, A. (2012). Novel role for the incretins in blood pressure regulation. Current Opinion in Nephrology and Hypertension, 21(5), 463–468.
Zhang, L., Riepler, S. J., Turner, N., Enriquez, R. F., Lee, I. C. J., Baldock, P. A., Herzog, H., et al. (2010). Y2 and Y4 receptor signaling synergistically act on energy expenditure and physical activity. AJP: Regulatory, Integrative and Comparative Physiology, 299(6), R1618–R1628.
Zheng, W., McLerran, D., Rolland, B., Zhang, X., Inoue, M., Matsuo, K., He, J., et al. (2011). Association between Body-Mass Index and Risk of Death in More Than 1 Million Asians. New England Journal of Medicine, 364(8), 719–729.
Zhou, Z., Zhu, G., Hariri, A. R., Enoch, M.-A., Scott, D., Sinha, R., Virkkunen, M., et al. (2008). Genetic variation in human NPY expression affects stress response and emotion. Nature, 452(7190), 997–1001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62954-
dc.description.abstract本論文試圖用系統、全面性的路徑分析方法研究肥胖及其相關代謝症狀。在中樞神經系統中,POMC和NPY共同在下視丘表現並且調控飲食和能量平衡。除此之外,由腸胃道和胰臟所分泌的荷爾蒙在過往研究中也被發現和下視丘中的能量中樞有交互作用,共同調控食慾和代謝。在本篇研究當中,我們共收集了454位參與者,其中318位的BMI達25以上。我們測量了十種肥胖相關代謝指標,包含腰圍、禁食血糖、飯後血糖、糖化血色素、血壓(收縮壓和舒張壓)和血脂相關指標(三酸甘油脂、高密度膽固醇、低密度膽固醇和總膽固醇量)。遺傳變異的部分,我們分析了四個在POMC和NPY上的單一核甘酸多型性(POMC上的rs2071345、rs1042571 、rs1009388 ; NPY的rs16147)。另外,我們共測定了七種周邊荷爾蒙的禁食後濃度,其中三種來自胰臟(insulin、amylin、pancreatic polypeptide),另外四種分泌自腸胃道(ghrelin、glucose-dependent insulinotropic peptide, glucagon-like peptide-1 and peptide YY)。並試圖利用結構方程模式建構出一完整地從遺傳變異、荷爾蒙表現到代謝指標的模型。在我們建構出的最適模型中,POMC和所有的荷爾蒙表現都有相關,NPY則是和amylin、PP、 ghrelin、 GLP-1、PYY有關,而這兩個基因的變異則主要影響血糖和血脂相關指標。荷爾蒙的部分則以insulin、PP、GIP、GLP-1對代謝指標的影響較為全面。代謝體學研究的部分,我們挑出20對性別、年紀、BMI配對的代謝健康和異常的肥胖者,並且利用液相層析串聯質譜儀分析代謝物濃度;另外多加入了14對配對後的樣本後用氣相層析串聯質譜儀進行分析。三個代謝途徑在代謝健康和異常的肥胖者身上呈現顯著差異的表現(D-glutamine and D-glutamate metabolism、phenylalanine metabolism 、valine, leucine and isoleucine degradation)。在本篇研究中,我們建構出了一個從遺傳變異和荷爾蒙表現到代謝狀況的完整模型,並佐以代謝體學研究的幫助,找出了三個相關的代謝途徑,在肥胖者身上之代謝調控中可能扮演關鍵角色。zh_TW
dc.description.abstractObesity and abnormal metabolic status increase disease burden and mortality worldwide. A systematic view with pathway approach to exam metabolism-regulated pathway is in need. In hypothalamus, Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) play important roles in energy balance, and they regulate appetite and metabolism with pancreatic and gut hormones. Previously, POMC, NPY, pancreatic and gut hormones are found to be correlated with obesity and abnormal metabolic status. In addition, metabolomics studies provide another aspect to investigate the outcome of interests through the whole metabolites screening. In the current study, we aimed to systematically study the correlations and pathways for metabolic outcomes from genes, peripheral hormones, and metabolomics. We recruited 454 participants, in which 318 with BMI≥25. Anthropometrical (e.g. body weight and height, waist circumstance) and biochemical indexes (including systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, total cholesterol, triglyceride, fasting blood glucose, postprandial blood glucose, glycated hemoglobin) were assessed at baseline examination. We genotyped 4 markers (rs2071345, rs1042571 and rs1009388 in POMC gene; rs16147 in NPY gene). Several hormones were measured using fasting blood, including 3 pancreatic hormones: insulin, amylin and pancreatic polypeptide, and 4 gut hormones: ghrelin, glucose-dependent insulinotropic peptide, glucagon-like peptide-1 and peptide YY. Structural equation modeling (SEM) was applied to construct a comprehensive framework from genes, hormones to metabolic phenotypes while adjusted for age, sex, and body-mass index. In our besting fitting model, POMC was associated with all the hormones expression. NPY was associated with amylin, PP, ghrelin, GLP-1 and PYY. Among metabolic traits, both genes mainly exhibited effects on blood glucose and lipid profile. For the effects from hormones to metabolic phenotypes, insulin, PP, GIP and GLP-1 comprehensively affected all aspects of the metabolic traits. Metabolomics study was conducted in 20 sex and age matched metabolic healthy obese (MHO) and 20 metabolic abnormal obese (MAO) individuals using liquid chromatography-mass spectrometer. Additional 14 matched pairs of MHO and MAO samples were further measured by gas chromatography-mass spectrometer. In the metabolomics study, we found that pathways involved with D-glutamine and D-glutamate metabolism, phenylalanine metabolism and valine, leucine and isoleucine degradation are the important pathways to distinguish MHO from MAO individuals. This study is the first to depict the complex pathway in central neuronal functions with genetic variants, pancreatic and gut hormonal expressions for obesity related metabolic traits. With additional metabolomics assessment, important metabolism pathways were also identified for metabolic status in obese subjects.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:16:18Z (GMT). No. of bitstreams: 1
ntu-102-R99849043-1.pdf: 1900164 bytes, checksum: d96ed86aa2f70b286cd369b319185c5b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
CONTENTS VI
TABLE CONTENTS VII
FIGURE CONTENTS VIII
APPENDIX CONTENTS IX
INTRODUCTION 1
I. SYSTEMATIC PATHWAY ESTIMATIONS 1
II. METABOLOMICS STUDY 4
METHODS 7
I. SYSTEMATIC PATHWAY ESTIMATION 7
Subjects 7
Genotyping 7
Measurement of metabolic indexes and hormones 8
Statistical analysis 8
II. METABOLOMICS STUDY 10
Subjects 10
Metabolomics profiling 11
Statistical analysis 12
RESULTS 13
GENETIC ASSOCIATIONS 14
HORMONE EXPRESSION 14
SEM ESTIMATION 15
METABOLOMICS WITH LC-MS 16
METABOLOMICS WITH GC-MS 17
DISCUSSIONS 18
I. SYSTEMATIC PATHWAY ESTIMATION 18
II. METABOLOMICS STUDY 22
III. LIMITATION 26
CONCLUSION 27
ACKNOWLEDGEMENTS 27
REFERENCE 28
TABLES 38
FIGURERS 53
APPENDICES 58
dc.language.isoen
dc.subject代謝體學zh_TW
dc.subject腸胃道荷爾蒙zh_TW
dc.subject肥胖zh_TW
dc.subject代謝指標zh_TW
dc.subject胰臟荷爾蒙zh_TW
dc.subjectmetabolomicsen
dc.subjectobesity-related metabolic traiten
dc.subjectPOMCen
dc.subjectNPYen
dc.subjectpancreatic hormoneen
dc.subjectgut hormoneen
dc.subjectmetabolically healthy obesityen
dc.title以路徑方法分析肥胖相關代謝指標:從基因、荷爾蒙到代謝體研究zh_TW
dc.titleUsing Pathway Approach to Analyze Obesity-Related Metabolic Traits: From Genetic Variants, Hormone Expressions to Metabolomicsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee潘文涵(Wen-Harn Pan),吳至行(Chih-Hsing Wu)
dc.subject.keyword肥胖,代謝指標,胰臟荷爾蒙,腸胃道荷爾蒙,代謝體學,zh_TW
dc.subject.keywordobesity-related metabolic trait,POMC,NPY,pancreatic hormone,gut hormone,metabolomics,metabolically healthy obesity,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2013-02-05
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved