請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉瑞芬(Ruey-Fen Liou) | |
| dc.contributor.author | Ke-Jyun Peng | en |
| dc.contributor.author | 彭可均 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:15:59Z | - |
| dc.date.available | 2018-02-21 | |
| dc.date.copyright | 2013-02-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-05 | |
| dc.identifier.citation | 王國馨。2011。探討番茄SlER24基因在生物逆境之重要性。碩士論文,國立臺灣大學植物病理與微生物研究所,臺灣。
胡珮雯。2012。探究SlWRKY15轉錄因子在番茄基礎防禦反應扮演的角色。碩士論文,國立臺灣大學植物病理與微生物研究所,臺灣。 郭孚燿。2009。番茄。國產優良品牌蔬果生產管理技術作業標準。486頁。 劉依昌,王仁晃,韓錦絲,謝明憲,陳正次,王仕賢。2006。 小果番茄新品種˚台南亞蔬19號。台南區農業專訊 57:5-8。 劉依昌、韓錦絲、謝明憲、王仕賢、顏永福。2008。番茄有機栽培。作物有機栽培。312頁。 蔡竹固。2003。番茄主要病蟲草害及其綜合防治方法。http://web.ncyu.edu.tw/~jgtsay/jg6-2074.html Abuqamar, S., Luo, H., Laluk, K., Mickelbart, M. V., and Mengiste, T. 2009. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal 58: 347-360. Ahuja, I., Kissen, R., and Bones, A.M. 2012. Phytoalexins in defense against pathogens. Trends in Plant Science 17: 73-90. Albrecht, C., Russinova, E., Kemmerling, B., Kwaaitaal, M., and de Vries, S.C. 2008. Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiology 148: 611-619. Ann, P. J., Tsai, J. N., Wong, I. T., and Lin, C. Y. 2009. A simple technique, concentration and application schedule for using Neutralized Phosphorous Acid to control Phytophthora Diseases. Plant Pathology Bulletin 18: 155-165. Antolin-Llovera, M., Ried, M. K., Binder, A., and Parniske, M. 2012. Receptor kinase signaling pathways in plant-microbe interactions. Annual Reviews of Phytopathology 50: 451-473. Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I., and Venter, E. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences 102: 7766-7771. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983. Attard, A., Gourgues, M., Callemeyn-Torre N., and Keller, H. 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytologist 187: 449-460. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., and Doolittle, W. F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 5493: 972-977. Bar, M., Sharfman, M., Ron, M., and Avni, A. 2010. BAK1 is required for the attenuation of Ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. The The Plant Journal 63: 791-800. Bari, R., and Jones, J. D. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69: 473-488. Beck, M., Zhou, J., Faulkner, C., Maclean, D., and Robatzek, S. 2012. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 10: 4205-4219. Bouchez, O., Huard, C., Lorrain, S., Roby, D.,and Balague, C. 2007. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiology, 145: 465-477. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., and Sheen, J. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464: 418-422. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., Nurnberger, T. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO Journal 21: 6681-6688. Chaparro-Garcia, A., Wilkinson, R. C., Gimenez-Ibanez, S., Findlay, K., Coffey, M. D., Zipfel, C., Rathjen, J. P., Kamoun, S., and Schornack, S. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6: e16608. Chinchilla, D., Shan, L., He, P., de Vries, S., and Kemmerling, B. 2009. One for all: The receptor-associated kinase BAK1. Trends in Plant Science 14: 535-541. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G., and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. Clay, N. K., Adio, A. M., Denoux, C., Jander, G., and Ausubel, F. M. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323: 95-101. Contento, A.L. and Bassham, D.C. 2012. Structure and function of endosomes in plant cells. Journal of Cell Science 125: 3511-3518. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.D., and Schumacher, K. 2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18: 715–730. Dievart, A., and Clark, S.E. 2003. Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. Current Opinion in Plant Biology 6: 507-516. Duan, Y. H., Guo, J., Ding, K., Wang, S. J., Zhang, H., Dai, X. W., Chen, Y. Y., Govers, F., Huang, L. L., and Kang, Z. S. 2011. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Molecular Biology Reports 38: 301-307. Erwin D. C. and Ribeiro, O.K. 1996. Phytophthora disease worldwide. The American Phytopathological Society, Saint Paul, Minnesota. 592 pp. Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P., and Mauch-Mani, B. 2008. nterplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. The Plant Journal 54: 81-92. Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y. T., Chen, S. and Li, X. 2009. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host & Microbe 6: 34-44. Gaulin, E., Drame, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., et al. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18: 1766-1777. Ghelis, T. 2011. Signal processing by protein tyrosine phosphorylation in plants. Plant Signaling & Behavior 6:942-951. Gomez-Gomez, L., and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003-1011. Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K., Li, J., Schroeder, J. I., Peck, S. C., and Rathjen, J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences 104: 12217-12222. Hein, I., Gilroy, E.M., Armstrong M.R., and Birch, P.R.J. 2009. The zig-zag-zig in oomycete-plant interactions. Molecular Plant Pathology10: 547-562. Holton, N., Cano-Delgado, A., Harrison, K., Montoya, T., Chory, J., and Bishop, G. J. 2007. Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19: 1709-1717. Ingle, R. A., Carstens, M., and Denby, K. J. 2006. PAMP recognition and the plant-pathogen arms race. Bioessays 28: 880-889. Irani, N.G. and Russinova, E. 2009. Receptor endocytosis and signaling in plants. Current Opinion in Plant Biology 12: 653-659. Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., Ohsumi, Y., Hanson, M. R., and Mae, T. 2008. Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG genedependent autophagy process. Plant Physiology 148: 142-155. Ito, N., Katabatake, R., Seo, S., Hilaga, S., Mitsuhala, I., and Ohashi, Y. 2002. Induced expression of a temperature-sensitive leucine-rich repeat receptor-like protein kinase gene by hypersensitive cell death and wounding in tobacco plant carrying the N resistance gene. Plant Cell Physiology 43: 266-274. Ito, T., Nakata, M., Ishida, S., and Takahashi, Y. 2011. The mechanism of substrate recognition of Ca2+-dependent protein kinases. Plant Signaling & Behavior 6: 924-926. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. Kamoun, S. 2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology 44: 41-60. Kamoun, S., Lindqvist, H., and Govers, F. 1997. A novel class of elicitin-like genes from Phytophthora infestans. Molecular Plant Microbe Interaction 10: 1028-1030. Kanzaki, H., Saitoh, H., Takahashi, Y., Berberich, T., Ito, A., Kamoun, S., and Terauchi, R. 2008. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228: 977-987. Kobe, B., and Deisenhofer, J. 1995. Proteins with leucine-rich repeats. Current Opinion in Structural Biology 5: 409-416. Koornneef, A., and Pieterse, C. M. J. 2008. Cross-talk in defense signaling. Plant Physiology 146: 839-844. Lamour, K. H., and Kamoun, S. 2009. Oomycete Genetics and Genomics: Diversity, Intreractions and Research Tools. Hoboken, NJ: Wiley-Blackwell. Lee, S. J., and Rose, J. K. 2010. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signaling & Behavior 5: 769-772. Li, J., and Chory, J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929-938. Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213-222. Li, Y., 2000. The YXXO motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. Journal of Biological Chemistry 275: 17187-17194. Lou, Q., Iovene, M., Spooner, D.M., Buell, C.R., and Jiang, J. 2010. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119: 435-442. Mateos, F. V., Rickauer, M., and Esquerre-Tugaye, M. T. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Molecular Plant Microbe Interaction 10: 1045-1053. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences 104: 19613-19618. Monaghan, J. and Zipfel, C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology 15: 349-357. Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T., and Bishop, G. J. 2002. Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14: 3163-3176. Moschou, P. N., Sarris, P. F., Skandalis, N., Andriopoulou, A. H., Paschalidis, K. A., Panopoulos, N. J., and Roubelakis-Angelakis, K. A. 2009. Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiology 149: 1970-1981. Mouton-Perronnet, F., Bruneteau, M., Denoroy, L., Bouliteau, F. P., Ricci, P., Bonnet, P. H., and Michel, G. 1995. Elicitin produced by an isolate of Phytophthora parasitica pathogenic to tobacco. Phytochemistry 38: 41-44. Nicholson, R. L., and Hammerschmidt, R. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30: 369-389. Nurnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449-460. Orci, L., Perrelet, A., Ravazzola, M., Wieland, F. T., Schekman, R., and Rothman, J. E. 1993. 'BFA bodies': a subcompartment of the endoplasmic reticulum. Proceedings of the National Academy of Sciences 90: 11089-11093. Ortiz-Zapater, E., Soriano-Ortega, E., Marcote, M. J., Ortiz-Masia, D., and Aniento, F. 2006. Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. The Plant Journal 48: 757-770. Otegui, M.S., and Spitzer, C. 2008. Endosomal functions in plants. Traffic 9: 1589-1598. Phytopathology 44: 135–162. Qutob, D., Kamoun, S., and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. The Plant Journal 32: 361-373. Robatzek, S., Chinchilla, D., and Boller, T. 2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Development 20: 537-542. Robert, S., Chary, S.N., Drakakaki, G., Li, S., Yang, Z., Raikhel, N.V., and Hicks, G.R. 2008. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proceedings of the National Academy of Sciences 105: 8464–8469. Robert-Seilaniantz, A., Grant, M. and Jones, J.D.G. 2011. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology 49: 317-343. Ron, M., and Avni, A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16: 1604-1615. Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F. G., Tor, M., de Vries, S., and Zipfel, C. 2011. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440-2455. Russinova, E. 2004. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). The Plant Cell 16: 3216-3229. Russinova, E., Borst, J. W., Kwaaitaal, M., Cano-Delgado, A., Yin, Y., Chory, J., and de Vries, S. C. 2004. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16: 3216-3229. Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K., Beeler, S., Boller, T., Felix, G., and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. Journal of Biology & Chemistry 285: 9444-9451. Shan, W., Cao, M., Leung, D., Tyler, B. M. 2004. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant Microbe Interaction 17: 394-403. She, J., Han, Z., Kim, T. W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., Wang, Z. Y., and Chai, J. 2011. Structural insight into brassinosteroid perception by BRI1. Nature 474: 472-476. Shibata, Y., Kawakita, K., and Takemoto, D. 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene-and salicylic acid-mediated signaling pathways. Molecular Plant Microbe Interaction 23: 1130-1142. Shiu, S.H., and Bleecker, A. B. 2001. Plant receptor-like kinase gene family: Diversity, function, and signaling. Science's STKE 113: re22. Song, L., Shi, Q. M., Yang, X. H., Xu, Z. H., and Xue, H. W. 2009. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Research 19: 864-876. Stassen, J.H.M. and Van den Ackerveken, G. 2011. How do oomycete effectors interfere with plant life? Current Opinion in Plant Biology 14: 407-414. Sugano, S.S., Shimada, T., Imai, Y., Okawa, K., Tamai, A., Mori, M., and Hara-Nishimura, I. 2010. Stomagen positively regulates stomatal density in Arabidopsis. Nature 463: 241–244. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599. Tanaka, K., Nguyen, C.T., Liang, Y., Cao, Y. and Stacey, G. 2013. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signaling & Behavior 8: 18-17. Thines, M. and Kamoun, S. 2010. Oomycete-plant coevolution: recent advances and future prospects. Current Opinion in Plant Biology 4: 427-433. Thompson, J. D, Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680. Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiology 143: 364-377. Torto, T. A., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N. A., van West, P., Kamoun, S. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Research 13: 1675-1685. Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H., Aerts, A. et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313: 1261-1266. van Loon, L.C., Rep, M. and Pieterse, C.M.J. (2006) Significance of Wan, J., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G., and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471-481. Wang, J., Cai, Y., Miao, Y., Lam, S.K., and Jiang, L. 2009. Wortmannin induces homotypic fusion of plant prevacuolar compartments. Journal of Experimental Botany 60: 3075-3083. Wang, X., Goshe, M. B., Soderblom, E. J., Phinney, B. S., Kuchar, J. A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S. D. 2005. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17: 1685-1703. Wang, Z. Y., Wang, Q., Chong, K., Wang, F., Wang, L., Bai, M., and Jia, C. 2006. The brassinosteroid signal transduction pathway. Cell Research 16: 427-434. Wu, C. H., Lin, C. P., Ann, P. J. and Liou, R. F. 2012. Microarray analysis of gene expression profiles induced by neutralized phosphorous acid and Phytophthora parasitica in tomato. XV International Congress on Molecular Plant-Microbe Interactions, July 29-August 2, 2012 in Kyoto, Japan. Wu, C. H., Yan, H. Z., Liu, L. F., and Liou, R. F. 2008. Functional characterization of a gene family encoding Polygalacturonases in Phytophthora parasitica. Molecular Plant Microbe Interaction 21: 480-489. Wu, F. and Tanksley, S.D. 2010. Chromosomal evolution in the plant family solanaceae. BMC Genomics 11: 182. Yan, H. Z., and Liou, R. F. 2005. Cloning and analysis of Pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genetic Biology 42: 339-350. Zhang, Y., Zhu, H., Zhang, Q., Li, M., Yan, M., Wang, R., Wang, L., Welti, R., Zhang, W. and Wang, X. 2009. Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis. The Plant Cell 21: 2357-2377. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62946 | - |
| dc.description.abstract | 植物leucine-rich repeat (LRR)-receptor like kinases (LRR-RLKs)不僅與植物生長分化相關,在植物對抗病原的抗病機制也扮演重要的角色。這類膜蛋白的作用機制通常是以胞外的LRR domain感受環境的刺激後,與其co-receptor形成dimer,經由交互磷酸化活化彼此胞內的激酶,最後將訊息傳入胞內的下游因子。近年來的研究指出,LRR-RLKs將胞外訊息傳入胞內時也涉及胞吞作用(endocytosis)。本實驗室先前針對亞磷酸處理之後的番茄(Solanum lycopersicum)進行生物晶片分析,發現多個表現顯著變化的基因,其中之一為LRR-RLK,本研究將其定名為SlRLK1。於番茄基因體進行序列比對分析後發現另一相同度極高的LRR-RLK,定名為SlRLK2。半定量RT-PCR分析結果顯示,接種疫病菌(Phytophthora parasitica)能顯著誘導SlRLK1表現,但對SlRLK2的影響不顯著,因此後續研究多集中在SlRLK1。SlRLK1也會被疫病菌PAMPs,包括ParA1與CBEL誘導表現,但處理疫病菌另一PAMP (pep13)及細菌PAMPflg22對SlRLK1的表現並無影響。為了探討SlRLK1之功能,本研究接著利用Tobacco rattle virus (TRV)系統引發SlRLK1基因靜默,發現SlRLK1表現量受到抑制的植株,在接種P. parasitica後明顯較為感病,顯示SlRLK1在番茄對於P. parasitica的抗性可能扮演重要角色。利用農桿菌在圓葉菸草(Nicotiana benthamiana)葉片上短暫表現SlRLK1-GFP的融和蛋白,發現此蛋白位於植物細胞膜;進而在葉片上接種P. parasitica或處理ParA1與CBEL皆能使SlRLK1-GFP產生胞吞現象,因此推測SlRLK1可能藉由胞吞作用將生物逆境的訊息傳入胞內並且引發相關的防禦反應。在不同植物抗病荷爾蒙處理下,水楊酸和乙烯皆會提昇SlRLK1的表現,但處理茉莉酸則導致基因表現些微下降。觀察在SlRLK1基因靜默的番茄植株中植物荷爾蒙相關基因的表現情形,發現部分水楊酸、乙烯、茉莉酸及離層素的相關調控基因的表現受到影響而表現量較低;其中受到最多影響的是茉莉酸上游基因Proteinase inhibitor ΙΙ (Pin2)與Lipoxygenase (LoxD),顯示SlRLK1的作用很可能參與在植物荷爾蒙的調控途徑。未來的研究目標將著重於找出能夠與SlRLK1結合並啟動下游防禦反應之作用因子,進而找出它們辨識的訊息分子,以及確認SlRLK1之激酶活性以明確瞭解SlRLK1於番茄的防禦反應所扮演的角色。 | zh_TW |
| dc.description.abstract | Plant leucine-rich repeat (LRR)-receptor like kinases (LRR-RLKs) involved in not only in plant development but also innate immunity. LRR-RLKs generally perceive signals from the environment via LRR domain and dimerization with co- receptor, and then transduce extracellular signals into intracellular responses via trans- phosphorylation. Recent studies demonstrated that LRR-RLKs executed endocytosis to pass the messages from extracellular to intracellular. While identifying tomato (Solanum lycopersicum) genes which were differentially expressed in response to treatment with neutralized phosphorous acid (NPA) by microarrays, a variety of genes were found to be induced, including one that encoded a putative leucine-rich repeat receptor-like kinase (LRR-RLK), herein named SlRLK1. In addition, a close homolog of SlRLK1 was identified via blast search of the tomato genome database, herein named SlRLK2. Analysis by semi- quantitative reverse transcriptase-PCR showed that SlRLK1 was induced upon Phytophthora parasitica infection but not SlRLK2, suggesting a role of SlRLK1 in plant defense response against P. parasitica. Treatments of PAMPs form P. parasitica including ParA1 and CBEL also induced SlRLK1, but pep13 and flg22 (a bacterial PAMP) had no effect on the expression of SlRLK1. To characterize the function of SlRLK1 in plants, we down-regulated its expression by Tobacco rattle virus (TRV)-mediated gene silencing. Interestingly, SlRLK1-silenced tomato became more susceptible to P. parasitica. When SlRLK1-GFP fusion protein was transiently expressed on leaves of Nicotiana benthamiana by agroinfiltration, it was found to reside predominantly on the plasma membrane. However, endocytosis of SlRLK1-GFP fusion protein occurred after inoculation of P. parasitica as well as treatments with ParA1 and CBEL, suggesting its involvement in the perception of the Phytophthora pathogen. Treatment with either salicylic acid or ethylene enhanced the expression of SlRLK1. In contrast, methyl- jasmornate slightly reduced its transcript level. Furthermore, expression of some genes participating in salicylic acid-, ethylene-, jasmornic acid- and abscisic acid-mediated pathways were influenced in the SlRLK1-silencing tomato plants, especially Proteinase inhibitor ΙΙ (Pin2) and Lipoxygenase (LoxD) were significantly down-regulated, both of which are involved in jasmornic acid signaling. These results suggest an important role of SlRLK1 in tomato defense response against P. parasitica, but its regulation mechanism awaits further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:15:59Z (GMT). No. of bitstreams: 1 ntu-102-R99633009-1.pdf: 4432543 bytes, checksum: 202165d134e436e2c7ac82077ce371f8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 壹、前言 1 1. 番茄簡介1 2. 疫病菌(Phytophthora)之簡介1 3. 植物免疫 (Plant immunity)4 4. 植物LRR RLKs的特性6 5. 研究動機及策略8 貳、材料與方法10 1. 供試植物與其生長條件10 2. 疫病菌侵染實驗10 3. 青枯病接種實驗11 4. 親緣性分析11 5. 植物基因表現分析12 6. 在番茄植株系統性表現SlRLK1 13 7. 以Tobacco Rattle Virus (TRV)在番茄靜默Slrlk1之基因表現15 8. 植物非生物逆境處理17 9. 植物性荷爾蒙處理17 10. 疫病菌PAMP之處理18 11. 細菌之PAMP之處理18 12. SlRLK1在細胞中的分布19 参、結果22 1. 亞磷酸處理可誘導SlRLK1的表現22 2. 番茄SlRLK1與SlRLK2基因的選殖與序列分析22 3. SlRLK1及SlRLK2同源性基因之親緣樹分析23 4. SlRLK1與SlRLK2在番茄組織中的表現情形23 5. SlRLK1與SlRLK2在非生物逆境的表現情形24 6. 疫病菌之接種可誘導SlRLK1與SlRLK2在番茄葉片中的表現 24 7. 疫病菌相關PAMPs之處理能夠誘導SlRLK1與SlRLK2的表現 25 8. 在番茄植株系統性表現SlRLK1不影響番茄植株對疫病菌之耐病性25 9. 以TRV在番茄靜默SlRLK1之基因增加番茄植株對疫病菌之感病性25 10. SlRLK1蛋白位於植物之細胞膜26 11. 接種疫病菌或處理疫病菌PAMPs導致SlRLK1發生胞吞作用26 12. 內膜抑制劑Brefeldin A之處理使SlRLK1的移動受到干擾 27 13. 植物荷爾蒙對SlRLK1與SlRLK2基因表現之影響 28 14. SlRLK1基因靜默對番茄植株抗病相關基因的影響 28 肆、討論 30 1. SlRLK1與SlRLK2之同源性基因分析 30 2. SlRLK1參與番茄的抗病反應 32 3. SlRLK1與SlRLK2參與植物荷爾蒙的調控途徑中 35 4. 結語 36 伍、參考文獻37 陸、附表 49 柒、附圖 54 捌、附錄 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 疫病菌 | zh_TW |
| dc.subject | PAMP | zh_TW |
| dc.subject | 膜蛋白LRR-RLK | zh_TW |
| dc.subject | 胞吞作用 | zh_TW |
| dc.subject | TRV誘導基因靜默 | zh_TW |
| dc.subject | Tobacco rattle virus (TRV)-mediated gene silencing | en |
| dc.subject | endocytosis | en |
| dc.subject | LRR RLKs | en |
| dc.subject | Tomato | en |
| dc.subject | PAMP | en |
| dc.subject | Phytophthora parasitica | en |
| dc.title | 探討SlRLK1在番茄基礎防禦反應的角色 | zh_TW |
| dc.title | The Role of SlRLK1 in Basal Defense Responses of Tomato | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭秋萍,張孟基,王昭雯,葉信宏 | |
| dc.subject.keyword | 番茄,疫病菌,PAMP,膜蛋白LRR-RLK,胞吞作用,TRV誘導基因靜默, | zh_TW |
| dc.subject.keyword | endocytosis,LRR RLKs,PAMP,Phytophthora parasitica,Tobacco rattle virus (TRV)-mediated gene silencing,Tomato, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
