請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱麗珠 | |
| dc.contributor.author | Pi-Chuan Fan | en |
| dc.contributor.author | 范碧娟 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:14:43Z | - |
| dc.date.available | 2016-02-01 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-06 | |
| dc.identifier.citation | 1. Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med. 2007;13:39-44
2. Swaiman KF AS, ed. Pediatric neurology: principles and practice, 1999; Vol. 2 3. Wang SJ, Fuh JL, Young YH et al. Prevalence of migraine in Taipei, Taiwan: a population-based survey. Cephalalgia. 2000;20:566-572 4. Lu SR, Fuh JL, Juang KD, Wang SJ. Migraine prevalence in adolescents aged 13-15: a student population-based study in Taiwan. Cephalalgia. 2000;20:479-485 5. D'Andrea G, Nertempi P, Ferro Milone F et al. Personality and memory in childhood migraine. Cephalalgia. 1989;9:25-28 6. Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch Neurol. 2000;57:418-420 7. The International Classification of Headache Disorders: 2nd edition. Cephalalgia. 2004;24 Suppl 1:9-160 8. Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci. 2003;4:386-398 9. Weir GA, Cader MZ. New directions in migraine. BMC Med;9:116 10. Bae YC, Oh JM, Hwang SJ et al. Expression of vanilloid receptor TRPV1 in the rat trigeminal sensory nuclei. J Comp Neurol. 2004;478:62-71 11. Goadsby PJ. brainstem mechanisms of ongoing pain. In: Olesen J JT, ed. from basic pain mechanism to headache. 1st ed. New York: Oxford University Press, 2006:194-201 12. Moskowitz MA. The neurobiology of vascular head pain. Ann Neurol. 1984;16:157-168 13. Moskowitz MA. The visceral organ brain: implications for the pathophysiology of vascular head pain. Neurology. 1991;41:182-186 14. Nozaki K, Boccalini P, Moskowitz MA. Expression of c-fos-like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space. Neuroscience. 1992;49:669-680 15. Lafreniere RG, Cader MZ, Poulin JF et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med;16:1157-1160 16. Nealen ML, Gold MS, Thut PD, Caterina MJ. TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J Neurophysiol. 2003;90:515-520 17. Lance JW, Lambert GA, Goadsby PJ, Duckworth JW. Brainstem influences on the cephalic circulation: experimental data from cat and monkey of relevance to the mechanism of migraine. Headache. 1983;23:258-265 18. Weiller C, May A, Limmroth V et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658-660 19. Cutrer FM, Schoenfeld D, Limmroth V et al. Suppression by the sumatriptan analogue, CP-122,288 of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol. 1995;114:987-992 20. D'Andrea G, Leon A. Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci;31 Suppl 1:S1-7 21. Krukoff TL. c-fos Expression as a Marker of Functional Activity in the Brain: Immunohistochemistry In: Alan A. Boulton GBB, Alan N. Bateson, ed. Cell Neurobiology Techniques Vol. 33, 1998:213-230 22. Mitsikostas DD, Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res Brain Res Rev. 2001;35:20-35 23. Brain SD, Williams TJ, Tippins JR et al. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54-56 24. McCulloch J, Uddman R, Kingman TA, Edvinsson L. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci U S A. 1986;83:5731-5735 25. Ramadan NM. Targeting therapy for migraine: what to treat? Neurology. 2005;64:S4-8 26. Durham PL. Calcitonin gene-related peptide (CGRP) and migraine. Headache. 2006;46 Suppl 1:S3-8 27. Saito A, Kimura S, Goto K. Calcitonin gene-related peptide as potential neurotransmitter in guinea pig right atrium. Am J Physiol 1986;250:H693-698 28. Strecker T, Dieterle A, Reeh PW et al. Stimulated release of calcitonin gene-related peptide from the human right atrium in patients with and without diabetes mellitus. Peptides. 2006;27:3255-3260 29. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487-517 30. Juhasz G, Zsombok T, Modos EA et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain. 2003;106:461-470 31. Goadsby PJ, Lipton RB, Ferrari MD. Migraine--current understanding and treatment. N Engl J Med. 2002;346:257-270 32. Lassen LH, Haderslev PA, Jacobsen VB et al. CGRP may play a causative role in migraine. Cephalalgia. 2002;22:54-61 33. Buzzi MG, Carter WB, Shimizu T et al. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology. 1991;30:1193-1200 34. Olesen J, Diener HC, Husstedt IW et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350:1104-1110 35. Gallai V, Sarchielli P, Floridi A et al. Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia. 1995;15:384-390 36. Termine C, Ozge A, Antonaci F et al. Overview of diagnosis and management of paediatric headache. Part II: therapeutic management. J Headache Pain;12:25-34 37. Rizzoli PB. Acute and preventive treatment of migraine. Continuum (Minneap Minn). 2012;18:764-782 38. Dahlof C, Maassen Van Den Brink A. Dihydroergotamine, ergotamine, methysergide and sumatriptan - basic science in relation to migraine treatment. Headache. 2012;52:707-714 39. Silberstein SD, McCrory DC. Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache. 2003;43:144-166 40. Mathew NT, Jaffri SF. A double-blind comparison of onabotulinumtoxina (BOTOX) and topiramate (TOPAMAX) for the prophylactic treatment of chronic migraine: a pilot study. Headache. 2009;49:1466-1478 41. Edvinsson L, Linde M. New drugs in migraine treatment and prophylaxis: telcagepant and topiramate. Lancet. 2010;376:645-655 42. Chan KY, Gupta S, de Vries R et al. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model. Br J Pharmacol. 2010;160:1316-1325 43. Lipton RB, Bigal ME, Diamond M et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68:343-349 44. Silberstein SD, Holland S, Freitag F et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78:1337-1345 45. Holland S, Silberstein SD, Freitag F et al. Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78:1346-1353 46. Silberstein SD. Practice parameter: evidence-based guidelines for migraine headache (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2000;55:754-762 47. Termine C, Ozge A, Antonaci F et al. Overview of diagnosis and management of paediatric headache. Part II: therapeutic management. J Headache Pain. 2011;12:25-34 48. Hung RM, MacGregor DL. Management of pediatric migraine: Current concepts and controversies. Indian J Pediatr. 2008;75:1139-1148 49. O'Brien HL, Kabbouche MA, Hershey AD. Treating pediatric migraine: an expert opinion. Expert Opin Pharmacother. 2012;13:959-966 50. Mortelmans K, Post M, Thijs V et al. The influence of percutaneous atrial septal defect closure on the occurrence of migraine. Eur Heart J. 2005;26:1533-1537 51. Schwerzmann M, Nedeltchev K, Meier B. Patent foramen ovale closure: a new therapy for migraine. Catheter Cardiovasc Interv. 2007;69:277-284 52. Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL. Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons. Lancet. 2000;356:1648-1651 53. Rodes-Cabau J, Molina C, Serrano-Munuera C et al. Migraine with aura related to the percutaneous closure of an atrial septal defect. Catheter Cardiovasc Interv. 2003;60:540-542 54. Sharifi M, Dehghani M, Mehdipour M et al. Intense migraines secondary to percutaneous closure of atrial septal defects. J Interv Cardiol. 2005;18:181-183 55. Fernandez-Mayoralas DM, Fernandez-Jaen A, Munoz-Jareno N et al. Migraine symptoms related to the percutaneous closure of an ostium secundum atrial septal defect: report of four paediatric cases and review of the literature. Cephalalgia. 2007;27:550-556 56. Rodes-Cabau J, Mineau S, Marrero A et al. Incidence, timing, and predictive factors of new-onset migraine headache attack after transcatheter closure of atrial septal defect or patent foramen ovale. Am J Cardiol. 2008;101:688-692 57. Azarbal B, Tobis J, Suh W et al. Association of interatrial shunts and migraine headaches: impact of transcatheter closure. J Am Coll Cardiol. 2005;45:489-492 58. Arquizan C, Coste J, Touboul PJ, Mas JL. Is patent foramen ovale a family trait? A transcranial Doppler sonographic study. Stroke. 2001;32:1563-1566 59. Post MC, Thijs V, Herroelen L, Budts WI. Closure of a patent foramen ovale is associated with a decrease in prevalence of migraine. Neurology. 2004;62:1439-1440 60. Schwerzmann M, Wiher S, Nedeltchev K et al. Percutaneous closure of patent foramen ovale reduces the frequency of migraine attacks. Neurology. 2004;62:1399-1401 61. Akesson B, Skerfving S. Exposure in welding of high nickel alloy. Int Arch Occup Environ Health. 1985;56:111-117 62. Karas Z, Bladek J. [Nickel in the environment and morbid symptoms]. Przegl Lek. 2004;61 Suppl 3:55-57 63. Yew G, Wilson NJ. Transcatheter atrial septal defect closure with the Amplatzer septal occluder: five-year follow-up. Catheter Cardiovasc Interv. 2005;64:193-196 64. Yankovsky AE, Kuritzky A. Transformation into daily migraine with aura following transcutaneous atrial septal defect closure. Headache. 2003;43:496-498 65. Iivainen TE, Groundstroem KW, Lahtela JT et al. Serum N-terminal atrial natriuretic peptide in adult patients late after surgical repair of atrial septal defect. Eur J Heart Fail. 2000;2:161-165 66. Nagaya N, Nishikimi T, Uematsu M et al. Secretion patterns of brain natriuretic peptide and atrial natriuretic peptide in patients with or without pulmonary hypertension complicating atrial septal defect. Am Heart J. 1998;136:297-301 67. Kedhi E, Vermeersch P. The influence of the percutaneous closure of atrial septal defect on the occurrence of migraine. Eur Heart J. 2005;26:2746-2747 68. Stewart WF, Shechter A, Rasmussen BK. Migraine prevalence. A review of population-based studies. Neurology. 1994;44:S17-23 69. Wang SJ. Epidemiology of migraine and other types of headache in Asia. Curr Neurol Neurosci Rep. 2003;3:104-108 70. Winner P, Wasiewski W, Gladstein J, Linder S. Multicenter prospective evaluation of proposed pediatric migraine revisions to the IHS criteria. Pediatric headache committee of the American Association for the Study of Headache. Headache 1997;37:545-548 71. Hershey AD, Powers SW, Vockell AL et al. PedMIDAS: development of a questionnaire to assess disability of migraines in children. Neurology. 2001;57:2034-2039 72. Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8:283-298 73. Goadsby PJ, Zagami AS. Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain. 1991;114 ( Pt 2):1001-1011 74. Bartsch T, Goadsby PJ. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain. 2002;125:1496-1509 75. Mitsikostas DD, Sanchez del Rio M, Waeber C et al. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain. 1998;76:239-248 76. Seo K, Fujiwara N, Takeuchi K et al. Postnatal development of excitation propagation in the trigeminal subnucleus caudalis evoked by afferent stimulation in mice. Neurosci Res. 2005;52:201-210 77. Seo K, Someya G. Postnatal development of central nociceptive mechanisms modulating jaw muscle activity in the rat. Neurosci Lett. 2000;288:131-134 78. Guo A, Vulchanova L, Wang J et al. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci. 1999;11:946-958 79. Geppetti P, Del Bianco E, Santicioli P et al. Release of sensory neuropeptides from dural venous sinuses of guinea pig. Brain Res. 1990;510:58-62 80. Matsubara T, Moskowitz MA, Huang Z. UK-14,304, R(-)-alpha-methyl-histamine and SMS 201-995 block plasma protein leakage within dura mater by prejunctional mechanisms. Eur J Pharmacol. 1992;224:145-150 81. Yu XJ, Waeber C, Castanon N et al. 5-Carboxamido-tryptamine, CP-122,288 and dihydroergotamine but not sumatriptan, CP-93,129, and serotonin-5-O-carboxymethyl-glycyl -tyrosinamide block dural plasma protein extravasation in knockout mice that lack 5-hydroxytryptamine1B receptors. Mol Pharmacol. 1996;49:761-765 82. Winner P, Pearlman EM, Linder SL et al. Topiramate for migraine prevention in children: a randomized, double-blind, placebo-controlled trial. Headache. 2005;45:1304-1312 83. Lakshmi CV, Singhi P, Malhi P, Ray M. Topiramate in the prophylaxis of pediatric migraine: a double-blind placebo-controlled trial. J Child Neurol. 2007;22:829-835 84. Cruz MJ, Valencia I, Legido A et al. Efficacy and tolerability of topiramate in pediatric migraine. Pediatr Neurol. 2009;41:167-170 85. Chapman A, Keane PE, Meldrum BS et al. Mechanism of anticonvulsant action of valproate. Prog Neurobiol. 1982;19:315-359 86. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med. 2004;10:685-692 87. Cutrer FM, Limmroth V, Moskowitz MA. Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia. 1997;17:93-100 88. Fontebasso M. Topiramate for migraine prophylaxis. Expert Opin Pharmacother. 2007;8:2811-2823 89. Storer RJ, Goadsby PJ. Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia. 2004;24:1049-1056 90. Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport. 2005;16:1383-1387 91. Akerman S, Goadsby PJ. Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br J Pharmacol. 2005;146:7-14 92. Durham PL, Niemann C, Cady R. Repression of stimulated calcitonin gene-related peptide secretion by topiramate. Headache. 2006;46:1291-1295 93. Stewart WF, Lipton RB, Celentano DD, Reed ML. Prevalence of migraine headache in the United States. Relation to age, income, race, and other sociodemographic factors. JAMA. 1992;267:64-69 94. Lipton RB, Stewart WF, Diamond S et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41:646-657 95. Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A. The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev. 2005;49:65-76 96. Wang HS, Kuo MF. Tourette's syndrome in Taiwan: an epidemiological study of tic disorders in an elementary school at Taipei County. Brain Dev. 2003;25 Suppl 1:S29-31 97. Hamalainen ML, Hoppu K, Valkeila E, Santavuori P. Ibuprofen or acetaminophen for the acute treatment of migraine in children: a double-blind, randomized, placebo-controlled, crossover study. Neurology. 1997;48:103-107 98. Lewis DW, Kellstein D, Dahl G et al. Children's ibuprofen suspension for the acute treatment of pediatric migraine. Headache. 2002;42:780-786 99. Hamalainen ML, Hoppu K, Santavuori P. Sumatriptan for migraine attacks in children: a randomized placebo-controlled study. Do children with migraine respond to oral sumatriptan differently from adults? Neurology. 1997;48:1100-1103 100. Bille B, Ludvigsson J, Sanner G. Prophylaxis of migraine in children. Headache. 1977;17:61-63 101. Kim H, Byun SH, Kim JS et al. Comparison of flunarizine and topiramate for the prophylaxis of pediatric migraines. Eur J Paediatr Neurol 102. O'Brien HL, Kabbouche MA, Hershey AD. Treating pediatric migraine: an expert opinion. Expert Opin Pharmacother;13:959-966 103. Caruso JM, Brown WD, Exil G, Gascon GG. The efficacy of divalproex sodium in the prophylactic treatment of children with migraine. Headache. 2000;40:672-676 104. Forsythe WI, Gillies D, Sills MA. Propanolol ('Inderal') in the treatment of childhood migraine. Dev Med Child Neurol. 1984;26:737-741 105. Olness K, MacDonald JT, Uden DL. Comparison of self-hypnosis and propranolol in the treatment of juvenile classic migraine. Pediatrics. 1987;79:593-597 106. Ashrafi MR, Shabanian R, Zamani GR, Mahfelati F. Sodium Valproate versus Propranolol in paediatric migraine prophylaxis. Eur J Paediatr Neurol. 2005;9:333-338 107. Fan PC, Kuo PH, Chang SH et al. Plasma calcitonin gene-related peptide in diagnosing and predicting paediatric migraine. Cephalalgia. 2009;29:883-890 108. Silberstein SD. Topiramate in migraine prevention. Headache. 2005;45 Suppl 1:S57-65 109. Brandes JL, Saper JR, Diamond M et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA. 2004;291:965-973 110. Silberstein SD, Neto W, Schmitt J, Jacobs D. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol. 2004;61:490-495 111. Hershey AD, Powers SW, Vockell AL et al. Effectiveness of topiramate in the prevention of childhood headaches. Headache. 2002;42:810-818 112. Fan PC, Kuo PH, Hu JW et al. Different trigemino-vascular responsiveness between adolescent and adult rats in a migraine model. Cephalalgia;32:979-990 113. Hoffmann J, Neeb L, Israel H et al. Intracisternal injection of inflammatory soup activates the trigeminal nerve system. Cephalalgia. 2009;29:1212-1217 114. Del Sette M, Angeli S, Leandri M et al. Migraine with Aura and Right-to-Left Shunt on Transcranial Doppler: A Case-Control Study. Cerebrovasc Dis. 1998;8:327-330 115. Sztajzel R, Genoud D, Roth S et al. Patent Foramen Ovale, a Possible Cause of Symptomatic Migraine: A Study of 74 Patients with Acute Ischemic Stroke. Cerebrovasc Dis. 2002;13:102-106 116. Anzola GP. Clinical impact of patent foramen ovale diagnosis with transcranial Doppler. Eur J Ultrasound. 2002;16:11-20 117. Wilmshurst P, Nightingale S. Relationship between migraine and cardiac and pulmonary right-to-left shunts. Clin Sci. 2001;100:215-220 118. Azarbal B, Tobis J, Suh W et al. Association of interatrial shunts and migraine headaches: impact of transcatheter closure.[see comment]. J Am Coll Cardiol. 2005;45:489-492 119. Rodes-Cabau J, Mineau S, Marrero A et al. Incidence, timing, and predictive factors of new-onset migraine headache attack after transcatheter closure of atrial septal defect or patent foramen ovale. Am J Cardiol. 2008;101:688-692 120. Sharifi M, Dehghani M, Mehdipour M et al. Intense migraines secondary to percutaneous closure of atrial septal defects. J Interv Cardiol. 2005;18:181-183 121. Durham PL, Geppetti P, Capone JG et al. Calcitonin gene-related peptide (CGRP) and migraine CGRP and migraine: neurogenic inflammation revisited Calcitonin gene-related peptide and its role in migraine pathophysiology Calcitonin gene-related peptide (CGRP) and the pathophysiology of headache: therapeutic implications. Headache. 2006;46 Suppl 1:S3-8 122. Gallai V, Sarchielli P, Floridi A et al. Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally.[see comment]. Cephalalgia. 1995;15:384-390 123. Yankovsky AE, Kuritzky A. Transformation into daily migraine with aura following transcutaneous atrial septal defect closure.[see comment]. Headache. 2003;43:496-498 124. Kedhi E, Vermeersch P, Kedhi E, Vermeersch P. The influence of the percutaneous closure of atrial septal defect on the occurrence of migraine.[comment]. Eur Heart J. 2005;26:2746-2747 125. Akesson B, Skerfving S. Exposure in welding of high nickel alloy. Int Arch Occup Environ Health. 1985;56:111-117 126. Karas Z, Bladek J, Karas Z, Bladek J. [Nickel in the environment and morbid symptoms]. Przegl Lek. 2004;61 Suppl 3:55-57 127. Gordon BM, Moore JW. Nickel for Your Thoughts: Survey of the Congenital Cardiovascular Interventional Study Consortium (CCISC) for Nickel Allergy. J Invasive Cardiol. 2009;21:326-329 128. Ries MW, Kampmann C, Rupprecht HJ et al. Nickel release after implantation of the Amplatzer occluder. Am Heart J. 2003;145:737-741 129. Slavin L, Tobis JM, Rangarajan K et al. Five-year experience with percutaneous closure of patent foramen ovale. Am J Cardiol. 2007;99:1316-1320 130. Yew G, Wilson NJ, Yew G, Wilson NJ. Transcatheter atrial septal defect closure with the Amplatzer septal occluder: five-year follow-up. Catheter Cardiovasc Interv. 2005;64:193-196 131. Mortelmans K, Post M, Thijs V et al. The influence of percutaneous atrial septal defect closure on the occurrence of migraine.[see comment]. Eur Heart J. 2005;26:1533-1537 132. Lertsapcharoen P, Khongphatthanayothin A, La-orkhun V et al. Self-expanding nanoplatinum-coated nitinol devices for atrial septal defect and patent ductus arteriosus closure: a swine model. Indian Heart J. 2006;58:315-320 133. Sigler M, Jux C, Ewert P et al. Histopathological workup of an Amplatzer atrial septal defect occluder after surgical removal. Pediatr Cardiol. 2006;27:775-776 134. Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL. Clopidogrel reduces migraine with aura after transcatheter closure of persistent foramen ovale and atrial septal defects. Heart. 2005;91:1173-1175 135. Tomita H, Hatakeyama K, Soda W et al. Efficacy of ticlopidine for preventing migraine after transcatheter closure of atrial septal defect with Amplatzer septal occluder: a case report. J Cardiol. 2007;49:357-360 Bibliography 1. Fan PC, Wang PJ, Huang SF, Shen YZ. Hypomelanosis of Ito Associated with West Syndrome: Report of a Case. J Formos Med Assoc. 1994; 93(5):429-32. (SCI) 2. Fan PC, Teng RJ, Chou CC, Wu TJ, Tsou Yau KI, Hsieh KH. Impaired Immune Function in a Premature Infant with Zinc Deficiency After Total Parenteral Nutrition. Acta Paediatrica Sinica. 1996; 37(5):364-9. 3. Fan PC, Teng RJ, Chen JC, Huang CH, Tsou Yau KI. Rigid Bronchoscopy and Jet Ventilation in an Extremely Low Birthweight Infant. J Formos Med Assoc. 1996; 95(12):937-9. (SCI) 4. Wang PJ, Fan PC, Lee WT, Young C, Huang CC, Shen YZ. Severe Myoclonic Epilepsy in Infancy: Evolution of Electroencephalographic and Clinical Features. Acta Paediatrica Sinica. 1996; 37(6);428-32. 5. Wang PJ, Liu HM, Fan PC, Lee WT, Young C, Tseng CL, Huang KM, Shen YZ. Magnetic Resonance Imaging in Symptomatic/Cryptogenic Partial Epilepsies of Infants and Children. Acta Paediatrica Sinica. 1997; 38(2):127-36. 6. Fan PC, Chang MH, Lee PI, Safary A, Lee CY. Follow-up Immunogenicity of an Inactivated Hepatitis A Virus Vaccine in Healthy Children: Results after 5 Years. Vaccine. 1998; 16(2-3):232-5. (SCI) 7. Fan PC, Chiu CH, Yen MH, Huang YC, Li CC, Lin TY. School-aged children with Kawasaki disease: high incidence of cervical lymphadenopathy and coronary artery involvement. J Paediatr Child Health. 2003; 39(1):55-7. (SCI) 8. Fan PC, Yamauchi T, Noble LJ, Ferrierro DM, Age-dependent differences in glutathione peroxidase activity after Traumatic Brain Injury. J Neurotrauma. 2003; 20(5):437-446. (SCI) 9. Weng WC, Peng SS, Lee WT, Fan PC, Chien YH, Du JC, Shen YZ. Acute disseminated encephalomyelitis in children: one medical center experience. Acta Paediatr Taiwan. 2006; 47(2):67-71. 10. Chiou LC, Liao YY, Fan PC, Kuo PH, Wang CH, Riemer C, Prinssen EP. Nociceptin/orphanin FQ peptide receptors: Pharmacology and clinical implications. Current Drug Target. 2007; 8:117-135. (SCI) 11. Chen LR, Tsao PN, Su YN, Fan PC, Chou HC, Chen CY, Chang YH, Hsieh WS.. Congenital central hypoventilation syndrome with PHOX2B gene mutation in Taiwan - a case report PHOX2B. J Formos Med Assoc. 2007; 106(1):69-73. (SCI) 12. Wang SB, Fan PC, Weng WC, Lee WT. Mutism secondary to tongue dystonia in a boy with acute disseminated encephalitis. Newsletter of the Taiwan Child Neurology Society. 2007;31(35):8-11. (corresponding author) 13. Wang SB, Weng WC, Fan PC, Lee WT. Levetiracetam in continuous spike waves during slow-wave sleep syndrome. Pediatr Neurol. 2008;39(2):85-90. (SCI) 14. Wang SB, Weng WC, Lee NC, Hwu WL, Fan PC, Lee WT. Mutation of mitochondrial DNA G13513A presenting with Leigh syndrome, Wolff-Parkinson-White syndrome and cardiomyopathy. Pediatr Neonatol. 2008;49(4):145-9. (SCI) 15. Chen ST, Fan PC, Hwu WL, Wu MH. Fibrous Dysplasia in a Child With Mitochondrial A8344G Mutation. J Child Neurol. 2008;23(12): 1447-50. (SCI) (corresponding author) 16. Wu JY, Kuo PH, Fan PC, Wu HD, Shih FY, Yang PC. The role of non-invasive ventilation and factors predicting extubation outcome in myasthenic crisis. Neurocrit Care. 2009;10(1):35-42. (SCI) 17. Fan PC, Huang WJ, Chiou LC. Intractable chronic motor tics dramatically respond to Clerodendrum inerme (L.) Gaertn. J Child Neurol. 2009;24(7):887-90. (SCI) 18. Fan PC, Kuo PH, Chang SH, Lee WT, Wu RM, Chiou LC. Plasma calcitonin gene-related peptide in diagnosing and predicting pediatric migraine. Cephalalgia. 2009;29(8):883-90. (SCI). 19. Chiang LL, Kuo MF, Fan PC, Hsu WM. Trans-anal Repair of Colonic Perforation due to Ventriculoperitoneal Shunt. J Formos Med Assoc. 2010;109(6):472-5 (SCI) 20. Chiou LC, Lee HJ, Ho YC, Chen SP, Liao YY, Ma CH, Fan PC, Fuh JL, Wang SJ. Orexins/Hypocretins: Pain regulation and cellular actions. Curr Pharm Design. 2010;16(28):3089-100. (SCI) 21. Liu ST, Tsai FJ, Lee WT, Lee CM, Fan PC, Lin WS, Chiu YN, Gau SSF. Attentional Processes and ADHD-related Symptoms in Pediatric Patients with Epilepsy. Epilepsy Research. 2011;93:53-65. (SCI) 22. Tsai FJ, Chiang HL, Lee CM, Gau SSF, Lee WT, Fan PC, Wu YY, Chiu YN. Sleep problems in children with autism, attention-deficit hyperactivity disorder, and epilepsy. Res Autism Spect Dis. 2012;6:413-421. 23. Fan PC, Kuo PH, Hu JW, Chang SH, Hsieh ST, Chiou LC. Different trigemino- vascular responsiveness between adolescent and adult rats in a migraine model. Cephalalgia. 2012:32(13):979-90. (SCI) 24. Wei SH, Fan PC, Kuo PH, Chiou LC, Wang JK. Calcitonin gene-related peptide and size of the atrial septal defect in new-onset migraine after transcatheter closure: results of a preliminary study. Headache. 2012;52(6):985-92. (SCI) 25. Chen HL, Lee HJ, Huang WJ, Chou JF, Fan PC, Du JC, Ku YL, and Chiou LC. Clerodendrum inerme Leaf Extract Alleviates Animal Behaviors, Hyperlocomotion, and Prepulse Inhibition Disruptions,Mimicking Tourette Syndrome and Schizophrenia. Evid Based Complement Alternat Med. 2012;2012:284301. (SCI) 26. Lin YH, Chang, YW, Yang SH, Chang HH, Lu MY, and Fan PC. Gliomatosis cerebri with spinal metastasis presenting with chronic meningitis in two boys. J Formos Med Assoc. (SCI) (corresponding author) (in press) 27.Fan PC, Peng SSF, Yen RF, Shieh JY, Kuo MF. Improvement of cerebral glucose metabolism and white matter diffusion after vagus nerve stimulation treating intractable myoclonic astatic epilepsy. J Formos Med Assoc. (revision) Textbook 1. Kuo PH and Fan PC. Respiratory care for myasthenic crisis. Myasthenia Gravis. 2011 Nov 08 ISBN 978-953-307-787-1 2. “嬰幼兒疾病與保育實務”中之’中樞及周邊神經疾患, I.何謂神經系統? II.痙攣及癲 癇III.小孩子也會頭痛嗎?’ 華騰文化股份有限公司出版p.1-8 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62913 | - |
| dc.description.abstract | 背景
青少年偏頭痛無論在臨床症狀和藥物的反應都有別於成人,其原因尚不清楚。三叉神經血管系統(TGVS)及其分泌的降鈣素基因相關胜肽(CGRP)被認為是偏頭痛形成的重要因素之一。本論文即研究經枕骨大孔注入辣椒素(capsaicin)誘發TGVS神經發炎(neurogenic inflammation)反應,比較幼鼠和成鼠的差別,及其對抗偏頭痛藥物的不同反應。臨床研究方面則探討血漿CGRP在兒童偏頭痛之診斷與治療上應用的價值。另外,已知CGRP也可自心臟之特定組織分泌,而部分心房中膈缺損(ASD)患者經導管修復缺損後併發偏頭痛,因此進一步研究血漿CGRP在此病症所扮演的角色。 方法 TGVS反應包含檢視三叉神經和頸神經(TCC)之c-Fos表現、三叉神經節和硬腦膜之CGRP表現及硬腦膜之蛋白質外漏程度。同時建立公式,以距obex +0.6、-1.2、 -9 mm 以及+0.6、-0.6、-6 mm之c-Fos表現的神經元數分別估計成鼠和幼鼠之TCC表現的總量。採辣椒素刺激前給藥方式,檢視此動物模式對valproic acid 或 topiramate之反應。血漿CGRP以ELISA方式檢測,而偏頭痛失能指標則以PedMIDAS問卷評估。檢體則於發作時或發作間以及進行ASD手術前取得。另外,為研究抗偏頭痛藥物之療效,亦記錄服用急性治療藥物及至少服用預防性藥物二週後的反應。 結果 經辣椒素刺激,幼鼠與成鼠之TCC活化神經元數目無明顯差異,但幼鼠之周邊反應較不明顯,包含三叉神經節之CGRP表現、硬腦膜之CGRP之釋出和硬腦膜之蛋白質外漏不明顯。藥物反應方面,幼鼠之TCC活化神經元明顯被valproic acid (100 mg/kg, p=0.011) 及 topiramate (30 mg/kg, p=0.002; 100 mg/kg, p=0.006)抑制,而成鼠方面之抑制反應則較不明顯。臨床研究方面,前瞻性收集121位受試者的134 個檢體,其中66位為偏頭痛患者,33位非偏頭痛之頭痛患者,及22位非頭痛患者,年齡4-18歲。發現偏頭痛患者之CGRP值較非偏頭痛者高(p=0.007),又偏頭痛組中,發作時之CGRP值高於發作間值(p=0.036),然而在非偏頭痛組則未見此差異。此現象亦在同一受試者接受兩次抽血,比較其發作和發作間之CGRP值獲得證實(n=9; p=0.015 vs. n=4; p=0.47)。若以發作時CGRP值55.1 pg/ml為閥值,則預測偏頭痛之敏感度為0.81,而專一度為0.75。高CGRP值者(>200 pg/ml, n=7)之偏頭痛失能指數較低CGRP值者(<200 pg/ml, n=33)有偏高的趨勢(26.7 vs. 19.32, p=0.16)。進一步檢視CGRP值是否可預測患者服藥之反應,前瞻性收集68位5-18歲偏頭痛患者,發現62人(91%)需急性藥物和47人(69%)需預防性藥物治療。Naproxen即使為第二線藥物,其療效仍優於第一線的acetaminophen (減少頭痛50%以上有效率:56 vs. 42%),而預防藥物方面,第一線之topiramate 優於 flunarizine (70 vs. 55%),且二者之副作用發生率相同(10%)。需急性治療組之血漿CGRP值(284.4±47.2 pg/ml, n=62)與不需者無明顯差異(347.7±223.6 pg/ml, n=6; p>0.05);然而,需預防治療組之血漿CGRP值(364.1±61.8 pg/ml, n=47)則高於不需者(183±54.3 pg/ml, n=21; p=0.031)。又服用topiramate有效者之CGRP值(437.2±131.1 pg/ml, n=14)高於無效者 (66.8±19.4 pg/ml, n=6; p=0.015),而此現象則未見於其他預防性藥物。另外,為探討ASD修復後新生偏頭痛之形成原因,收集40位術前未曾頭痛發作之患者做分析。17名連續患者於術前接受CGRP檢測,其中4 名(23.5%)術後有偏頭痛發作。又發現ASD缺損較大者(20±0.9 vs. 16±1 mm, p= 0.009)及術前CGRP值較低者 (21.1±3.9 vs. 90.1±27.1 pg/mL, p= 0.042)易有術後新生偏頭痛。有5人接受兩次以上檢測,其頭痛發作時之CGRP值高於發作間值(257.2±45.5 vs. 45.6±25.5 pg/mL, p= 0.03)。 結論 基礎研究方面,本動物模式之年齡差異反應與臨床上之觀察雷同,即幼鼠對刺激較成鼠不敏感。而幼鼠對valproic acid或topiramate之抑制反應則較成鼠明顯。臨床研究方面,血漿CGRP值應用於兒童偏頭痛之診斷、生活失能及治療方面,具有正面價值。而ASD缺損大小及術前低CGRP值為預測術後新生偏頭痛之潛在指標。且與一般偏頭動患者相同,發作時之血漿CGRP值皆高於發作間值,暗示CGRP敏感度可能為致病的原因之一。以上研究結果有助於吾人了解偏頭痛之病理、診斷、及治療,並開拓新視野,同時也有助於未來開發兒童偏頭痛之新藥。 | zh_TW |
| dc.description.abstract | Background: Pediatric migraine displays different clinical features and drug response from adult migraine. The etiology of migraine remains unclear but the trigemino-vascular system (TGVS) is believed to play an important role. In a rat model of migraine induced by intra-cisternal (i.c.) instillation of capsaicin, we compared TGVS responses in adolescent and adult rats and their responsiveness to clinically effective antimigraine drugs, such as valproic acid and topiramate. Calcitonin gene-related peptide (CGRP), shown to be released from TGVS and also from specific cardiac tissues, can be measured in human plasma samples. Clinically, we also investigated the role of plasma CGRP in the diagnosis and pharmacological treatment of pediatric migraine and also in new-onset migraine headache attacks (MHAs) after transcatheter closure of atrial septal defect (ASD).
Methods: In animal studies, both central and peripheral TGVS responses were measured. The central response was measured by the number of c-Fos-protein-expressing neurons in the trigeminal cervical complex (TCC). Peripheral responses measured included CGRP expression in the trigeminal ganglia (TG) and dura mater, and dural protein extravasation. The formulae for estimating total numbers of activated TCC neurons were established based on the c-Fos-positive neuronal numbers in three sample sections, +0.6, -1.2 and -9 mm and +0.6, -0.6 and -6 mm, from the obex in adult and adolescent rats, respectively. Pretreated drug responsiveness to valproic acid and topiramate were examined. In clinical studies, plasma CGRP concentrations were measured by enzyme-linked immunosorbent assay and migraine disability by the pediatric migraine disability assessment (PedMIDAS) questionnaire. Blood sampling for CGRP measurement in children with migraine and non-migraine headache during or between headache attacks, and in age and gender matched control subjects as well as patients with ASD before or after transcatheter closure of ASD (ASO). In the study investigating the outcome of pharmacological therapy for pediatric migraine, in addition to plasma CGRP levels, we also recorded the responses to both acute and preventive therapies in which the patients took each preventive drug for at least 2 weeks. Results: After capsaicin instillation, adolescent rats had comparable numbers of activated TCC neurons as adult rats, but less TGVS peripheral responsiveness than adults, including CGRP immunoreactivity in the TG, and protein extravasation and CGRP depletion (inversely reflected by CGRP immunoreactivity) in the dura mater. In adult rats, total numbers of c-Fos reactive neurons after capsaicin stimulation are not significantly inhibited by valproic acid and topiramate, whereas, in the adolescent rats, they were significantly suppressed by valproic acid at 100 mg/kg (p=0.011) and topiramate at 30 (p=0.002) and 100 mg/kg (p=0.006). Clinically, we prospectively collected 134 blood samples during or between attacks from 66 migraine, 33 non-migraine headache (non-migraine) and 22 non-headache patients, aged 4-18 years. Migraineurs had higher plasma CGRP levels than non-migraine patients (p=0.007). The attack level was higher than the non-attack level in migraine (p=0.036), but not non-migraine, patients. This was also revealed in paired comparison (n=9; p=0.015 vs. n=4; p=0.47). Using a threshold of 55 pg/ml, the sensitivity of the attack level for predicting migraine was 0.81, and specificity 0.75. The PedMIDAS score tended to be higher in the high CGRP (>200 pg/ml, n=7) group than the low (<200 pg/ml, n=33) group (26.07 vs. 19.32, p=0.16), although not statistically significant using Mann-Whitney test. In the study investigating if the plasma CGRP level can predict pharmacological therapy outcome in pediatric migraineurs, we prospectively recruited 68 patients with migraines, aged 5-18 years. Sixty-two patients (91%) required acute therapy whereas 47 patients (69%) needed preventive treatments. Even as a second line therapy, naproxen was better than acetaminophen in terms of more responders with 50% headache reduction (56 vs. 42%). As for the first line preventive therapy, the response rate of topiramate was higher than flunarizine (70 vs. 55%) with comparable adverse effects (10%). Plasma CGRP levels were not significantly elevated in patients requiring acute therapy (284±47 pg/ml, n=62), compared to those who did not require (348±224 pg/ml, n=6; p>0.05), whereas they were higher in patients requiring preventive therapy (364±62 pg/ml, n=47) than those who did not require (183±54.3 pg/ml, n=21; p=0.031). The plasma CGRP levels of the responders to topiramate (437±131 pg/ml, n=14) were significantly higher than the non-responders (67±19 pg/ml, n=6; p=0.015), while there were no significant differences between responders and non-responders to the other drugs. For studying the role of CGRP in patients with new-onset MHAs after ASO, we prospectively collected patients before and after closure and measured plasma CGRP levels. Forty patients who had ASD but no previous migraine were enrolled. Four (23.5%) of the 17 consecutive patients whose CGRP levels were checked before ASO had new-onset MHAs. The patients with MHAs had a bigger ASD size (20±1 vs. 16±1 mm, p= 0.009) and lower CGRP levels before closure (21±4 vs. 90±27 pg/mL, p= 0.042) than those without. Among the 5 patients with blood samplings both during and between attacks, a paired comparison revealed a significantly increased level of CGRP during attack (257±46 vs. 46±26 pg/mL, p= 0.03). Conclusions: In a migraine animal model induced by i.c. capsaicin administration, we found less TGVS responsiveness and higher therapeutic responsiveness to either valproic acid or topiramate in adolescent rats than adults. This is reminiscent of less severe migraine and different pharmacological outcomes in pediatric patients clinically. In clinical studies, plasma CGRP levels are useful for the diagnosis and the prediction of disability and pharmacological treatment outcome in pediatric migraine. A bigger ASD size and lower plasma CGRP levels before ASO can be potential predictors of new-onset MHAs. Furthermore, a significant increase in CGRP levels during migraine attack implies that the occurrences of new-onset MHAs after ASO correlate with the release of CGRP. It suggests that CGRP sensitization from a lower baseline possibly involves in the occurrence of new-onset MHAs after ASO. All of these results may provide new insight into the pathophysiology, diagnosis and treatment of migraine and guide the development of new anti-migraine drugs for children. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:14:43Z (GMT). No. of bitstreams: 1 ntu-102-D93443006-1.pdf: 7637907 bytes, checksum: dca2a95a5def83b218f0676604fa60e3 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………. i
誌謝………………………………………………………………………………. ii 中文摘要…………………………………………………………………………. iv 英文摘要…………………………………………………………………………. vii 目錄………………………………………………………………………….……. xii 圖目錄………………………………………………………………………….…. xviii 表目錄………………………………………………………………………….…. xix 縮寫(Abbreviations)…………………………………………………………….… xx 1. 前言 (Introduction)……………………………………………………………. 1 1.1 Background……………………………………………………………………1 1.2. Diagnosis of migraine…………………………………………………………1 1.3. Pathogenesis of migraine ……………………………………………………2 1.3.1 Animal models……………………………………………………………3 1.3.2 Clinical studies……………………………………………………………4 1.4. Treatment of migraine…………………………………………………………5 1.4.1 Adult migraine……………………………………………………………5 1.4.1.1 Acute pharmacologic therapy…………………………………………5 1.4.1.2 Prophylactic therapy…………………………………………………6 1.4.2 Pediatric migraine…………………………………………………………6 1.4.2.1 Acute pharmacologic therapy…………………………………………7 1.4.2.2 Prophylactic therapy…………………………………………………7 1.5 New-onset migraine after closure of atrial septal defect………………………8 1.5.1 Background………………………………………………………………8 1.5.2 Pathogenesis………………………………………………………………8 1.5.3 Diagnosis…………………………………………………………………11 1.5.4 Treatment…………………………………………………………………11 1.5.5 Prognosis…………………………………………………………………11 1.6 Unmet needs in migraine research……………………………………………11 1.6.1 Differences between pediatric and adult migraine: mechanisms and drug responses…………………………………………………………………11 1.6.2. Roles of CGRP in pediatric migraine……………………………………11 1.6.3 The role of CGRP in new-onset migraine after ASD closure……………12 1.7 Study Aims……………………………………………………………………12 2. 方法 (Methods)………………………………………………………………..14 2.1 Animal studies………………………………………………………………..14 2.1.1 Animals………………………………………………………………….. 14 2.1.2 Intra-cisteral instillation of capsaicin………………………………….. 14 2.1.3 TCC brain sections………………………………………………………. 15 2.1.4 Dura mater preparations………………………………………………… 15 2.1.5 TG slice sections ……………………………………………………… 16 2.1.6 Immunohistochemistry of c-Fos protein in TCC sections…………….. …16 2.1.7 Immunohistochemistry of CGRP in TG slices and dura mater……….. 17 2.1.8 Protein extravasation in the dura mater…………………………….. … 17 2.2 Clinical studies……………………………………………………….. …… 17 2.2.1 Study subjects……………………………………………………….. …17 2.2.1.1. CGRP in diagnosis of pediatric migraine…………………….. …17 2.2.1.2. CGRP in treatment of pediatric migraine…………………….. …18 2.2.1.3. CGRP in new-onset migraine after ASD closure……………………19 2.2.2 Headache assessment…………………….. ……………….. ……………20 2.2.2.1 Severity……………………………………………………….. … …21 2.2.2.2 Disability……………………………………………………….. … 21 2.2.3 Plasma CGRP measurement……………………………………………21 2.2.4 Statistical analysis……………………………………………………….. 21 3. 結果 (Results) ………………………………………………………………..23 3.1 Animal studies………………………………………………………………..23 3.1.1 Age-dependent changes in a rat model of migraine induced by i.c. capsaicin……………………………………………………………….. 23 3.1.1.1 Physiological monitoring after i.c. capsaicin………………………23 3.1.1.2 Spatial distribution of c-Fos-ir neurons in the TCC after i.c. capsaicin……………………………………………………………23 3.1.1.3 Establishing formulas to estimate total numbers of c-Fos-ir neurons in the TCC…………………………………………………………… 24 3.1.1.4 Comparison of the numbers of capsaicin-activated TCC neurons between adult and adolescent rats…………………………………25 3.1.1.5 CGRP expression in the TG………………………………………… 26 3.1.1.6 CGRP expression and protein leakage in the dura mater…………… 26 3.1.2 Age-dependent effects of anti-migraine drugs in i.c. capsaicin-induced migraine model in rats………………………………………….. ….. … 26 3.2 Clinical studies…………………………………………………………….. …27 3.2.1 CGRP in diagnosis of pediatric migraine…………………………….. …27 3.2.1.1 Patient characteristics…………………………….. ……….. …… …27 3.2.1.2 Demographic features…………………………….. ……….. …… …28 3.2.1.3 Plasma CGRP and migraine diagnosis…………………………….. 28 3.2.1.4 Plasma CGRP and migraine disability…………………………….. 30 3.2.1.5 Plasma CGRP and demographic variables………………………….30 3.2.2 CGRP in treatment of pediatric migraine…………………………….. 31 3.2.2.1 Demographic features…………………………….. …………….. …31 3.2.2.2 Acute therapy…………………………….. …………….. ……….. 31 3.2.2.3 Preventive therapy……………………….. …………….. ……….. 32 3.2.2.4 Plasma CGRP and migraine treatment….. …………….. ……….. 32 3.2.3 CGRP in new-onset migraine after ASD closure….. …………….. ……33 4. 討論 (Discussion) …………………………….. …………….. ……….. …… 35 4.1 Age-dependent changes and pharmacological responses in a rat model of migraine induced by i.c. capsaicin……….. ……….. ……….. ……. ……….. 35 4.1.1 Capsaicin given by i.c. instillation as a migraine model……….. …….. 35 4.1.1.1 The central response……………………….. …………….. ……….. 35 4.1.1.2 Peripheral responses……………………….. …………….. ………..37 4.1.2 Age-dependent responsiveness in the capsaicin-induced migraine model.38 4.1.3 Age-dependent responsiveness to valproic acid and topiramate. ……….38 4.2 Clinical roles of CGRP in pediatric migraine……………….. …………….. 40 4.2.1 A marker for migraine diagnosis……………….. …………….. ………..40 4.2.2 A predictor for migraine disability and clinical features……….. ……….41 4.2.3. A biomarker for predicting pharmacological responses…….. ………. 43 4.3 CGRP in new-onset migraine after ASD closure…. ….. ………. …….. …….46 4.4 Conclusion…. ….. ………. …….. ……. …………….. ………. ……………49 參考文獻 (References)………………………………………………………………90 參考書目 (Bibliography) …………………………………………………………98 | |
| dc.language.iso | en | |
| dc.subject | 心房中膈缺損 | zh_TW |
| dc.subject | 動物模式 | zh_TW |
| dc.subject | 年齡差異 | zh_TW |
| dc.subject | 辣椒素 | zh_TW |
| dc.subject | 降鈣素基因相關胜肽 | zh_TW |
| dc.subject | 抗偏頭痛藥物 | zh_TW |
| dc.subject | 青少年偏頭痛 | zh_TW |
| dc.subject | antimigraine drugs | en |
| dc.subject | animal model | en |
| dc.subject | pediatric migraine | en |
| dc.subject | ASD | en |
| dc.subject | CGRP | en |
| dc.subject | capsaicin | en |
| dc.subject | age difference | en |
| dc.title | 抑鈣素基因相關胜肽在偏頭痛之角色︰年齡差異、診斷及治療 | zh_TW |
| dc.title | Roles of Calcitonin Gene-Related Peptide in Migraine:
Age Difference, Diagnosis, and Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王署君,何英剛,嚴震東,謝松蒼 | |
| dc.subject.keyword | 青少年偏頭痛,動物模式,年齡差異,辣椒素,降鈣素基因相關胜肽,抗偏頭痛藥物,心房中膈缺損, | zh_TW |
| dc.subject.keyword | pediatric migraine,animal model,age difference,capsaicin,CGRP,ASD,antimigraine drugs, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
