Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張陸滿(Luh-Maan Chang)
dc.contributor.authorTzu-Sou Chuangen
dc.contributor.author莊子壽zh_TW
dc.date.accessioned2021-06-16T16:14:15Z-
dc.date.available2013-03-15
dc.date.copyright2013-03-15
dc.date.issued2013
dc.date.submitted2013-02-07
dc.identifier.citationAlbrecht, D., 2005. Semiconductor manufacturing handbook - fundamentals of ultrapure water. New York, USA: McGraw Hill Companies, pp.30.3-30.4.
Balazs, 2003. Airborne molecular contamination guidelines for semiconductor clean- rooms and processes. Technical Report; Air Liquide America, Fremont, CA, USA.
Blalock, Jr. H.M., 1979. Social Statistics. Revised 2nd ed., New York, USA: McGraw Hill Companies, pp.466-479.
Castrucci, P.P., 1990. Emerging paradigms in semiconductor manufacturing. In: Semiconductor Manufacturing Science Symposium, 1990, 21-23 May 1990, Burlingame, CA, USA: pp.21-23.
Chang, L.-M., 2008. High-tech facility engineering in NT era. The Magazine of the Chinese Institute of Civil and Hydraulic Engineering; 35(1): 15-26.
Chen, W. and Zhang, J.-S., 2008. UV-PCO device for indoor VOCs removal: investigation on multiple compounds effect. Building and Environment; 43: 246- 252.
Choi, W., Ko, J.-Y., Park, H., and Chung, J.-S., 2001. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental; 31(3): 209-220.
Chou, M.-S. and Chang, K.-L., 2005. Scrubbing and UV/O3 oxidation of Volatile Organic Compounds (VOCs) in air streams. NSC 94-2211-E-110-007-; National Science Council, Taipei, Taiwan.
Chuang, T.-S. and Chang, L.-M., 2010a. AMC control through ultra-pure air for nano-tech environment. In: Proceedings of the 5th civil engineering conference in Asian region and Australasian structural engineering conference 2010, 8-12 August 2010, Sydney, Australia: Engineers Australia, pp.685-690.
Chuang, T.-S. and Chang, L.-M., 2010b. Using Ultra-Pure Air (UPA) to resolve AMC problems. In: Proceedings of the symposium on cleanrooms and associated controlled environments of eMEX 2010, 21-24 October 2010, Suzhou, China: Chinese Contamination Control Society, pp.128-140.
Chuang, T.-S. and Chang, L.-M., 2012. Ultra-Pure Air (UPA) for AMC control in nano-processing environment. Journal of the Chinese Institute of Engineers (2012); doi: 10.1080/02533839.2012.747046.
Chuang, T.-S. and Chang, L.-M., 2013. To mitigate airborne molecular contamination through ultra-pure air system. Building and Environment; 59: 153-163.
Den, W., Bai, H., and Kang, Y., 2006. Organic airborne molecular contamination in semiconductor fabrication clean rooms. Journal of the Electrochemical Society; 153(2): G149-G159.
Grenon, B.J., 2008. Haze and micro-contamination in the semiconductor industry. In: ESTECH 2008 54th annual technical meeting, 4-7 May 2008, Chicago, IL, USA: Institute of Environmental Sciences and Technology.
Hayakawa, I., 1985. Theories and Practices of Super Cleanroom. Tokyo, Japan: Inoue Shoin Co., pp.36-40.
Hu, S.-C., Chuah, Y.-K., and Yen, M.-C., 2002. Design and evaluation of a mini- environment for semiconductor manufacture processes. Building and Environment; 37: 201-208.
Ishihara, Y., Nakajima, D., and Ohmi, T., 2000. Economical clean dry air system for closed manufacturing system. IEEE Transactions on Semiconductor Engineering; 13(1): 16-23.
International Organization for Standardization, 2001. ISO Standard 14644-4. Cleanrooms and associated controlled environments -- Part 4: Design, construction and start-up. International organization for standardization, Geneva, Switzerland.
International Organization for Standardization, 2006. ISO Standard 14644-8. Cleanrooms and associated controlled environments -- Part 8: Classification of airborne molecular contamination. International organization for standardization, Geneva, Switzerland.
International Organization for Standardization, 2007. ISO Standard 21348. Space environment -- Process for determining solar irradiances. International organization for standardization, Geneva, Switzerland.
International technology roadmap for semiconductors, 2009. ITRS - Yield enhancement. International SEMATECH Manufacturing Initiative, Austin, TX, USA.
Jeong, J., Sekiguchi, K., Saito, M., Lee, Y., Kimb, Y., and Sakamoto, K., 2006. Removal of gaseous pollutants with a UV-C254+185 nm / TiO2 irradiation system coupled with an air washer. Chemical Engineering Journal; 118 (1-2): 127-130.
Kang, Y.-H., Peng, J.-C., Tsou, Y.-W., and Huang, C.-Y., 2009. Using low-resistance chemical filters in cleanroom make-up air unit for energy-conservation. Journal of Energy & HVAC Engineering (Chinese edition); 56: 54-58.
Kinkead, D., Joffe, M., Higley, J., and Kishkovich, O., 1995. Forecast of airborne molecular contamination limits for the 0.25 micron high performance logic process. Technology Transfer #95052812A-TR: Sematech Inc.; Texas, USA.
Kirumakki, S., Nagaraju, N., Chary, K., and Narayanan, S., 2003. Kinetics of esterification of aromatic carboxylic acids over zeolites Hβ and HZSM5 using dimethyl carbonate. Applied Catalysis A: General; 248: 161-167.
Lee, H.-M. and Chang, M.-B., 2003. Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Processing; 23: 541-558.
Lee, Y.-C., 2007. Characteristic studies for mesoporous carbon and silica structures for in-line enrichment of volatile organic compounds. Thesis (Master), National Central University, Taoyuan, Taiwan.
Li, J., Zhu, T.-L., Fan, X., and He, W., 2007a. Decomposition of dilute VOCs in air by a streamer discharge. International Journal of Plasma Environmental Science & Technology; 1(2): 141-145.
Li, S.-N., Shih, H.-Y., Yen, S.-Y., and Yang, J., 2007b. Case study of micro-contamination control. Aerosol and Air Quality Research; 7(3): 432-442.
Liu, S.-H., Teng, C.-W., Tsai, C.-J., and Li, S.-N., 2008. Using chemical filter to remove ammonia contaminants from lithographic area in cleanroom. Taiwanese Journal of Industrial Safety and Health; 225: 8-27.
Loui, A. and Chiang, S., 2004. Investigation of furan on vicinal Pd (1 1 1) by scanning tunneling microscopy. Applied Surface Science; 237: 559–564.
MacDonald, S.A., Clecak II, N.J., Wendt, R., Wilison, C.G., Snyder, C.D., Knors, C.J. Deyoe, N.B., Maltabes, J.G., Morrow, J.R., McGuire, A.E., and Holmes, S.J., 1991. Airborne Chemical Contamination of a Chemically Amplified Resist. In: Advances in Resist Technology and Processing VIII, SPIE (the International Society for Optics and Photonics); 1991. pp.2-12.
McIlvaine, R. and Vacura, K., 2007. World market for AMC control. CleanRooms, The Magazine of Contamination Control Technology. Oklahoma, USA: PennWell Corporation; 2007. pp.16-17.
McQuiston, F., Parker, J., and Spitler, J., 2005. Heating, ventilating, and air conditioning analysis and design. 6th ed. Hoboken, NJ, USA: John Wiley and Sons Inc., pp. 56-65.
Middlebrooks, M., 2004. Managing airborne molecular contamination in cleanrooms. Journal of the IEST; 47(1): 18-21.
Middlebrooks, M. and Baumgartner, M., 2001. Airborne Molecular Contamination (AMC) control and the effect of filter media technical parameters. Filtration; 2(4): 23-28.
Muggli, D.S., McCue, J.T., and Falconer, J.L., 1998. Mechanism of the photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis; 173: 470-483.
Muller, C., 2005. Semiconductor manufacturing handbook – airborne molecular contamination. New York, USA: McGraw Hill Companies, pp.41.1-41.23.
Muller, C. and Stanley, B., 2006. Chemical filtration strategies for the control of airborne molecular contamination, Part II. Controlled Environments Magazine; 11: 14-20.
Muller, C., 2002. Airborne molecular contamination control in semiconductor fabs: a practical approach. Semiconductor FabTech Journal; 16: 1-5.
Nadykto, A. and Yu, F., 2003. Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole-charge interaction. Journal of Geophysical Research; 108(D23): 4717, doi: 10.1029/2003JD003664.
Ohmi, T., 1993. Ultraclean technology handbook - ultrapure water. New York, USA: Marcel Dekker Inc., pp.373.
Oppenlander, T., 2003. Photochemical purification of water and air. Weinheim, Germany: Wiley-Vch Verlag GmbH & Co., pp.226-227.
Philips, R., 1983. Sources and Application of Ultraviolet Radiation. New York, USA: Academic Press Inc.
Purafil Inc., 2001. Assessment, control, monitoring of airborne molecular contamination in semiconductor cleanrooms. Technical Brochure 1200-B: Doraville, GA, USA.
Reist, P.C., 1984. Introduction to aerosol science. New York, USA: Macmillan Publishing Co., pp.194-202.
Saga, K., 2006. Chemical Contamination Control in ULSI Processing. Thesis (PhD), Waseda University, Japan: pp.4-10.
Schmid, S., Jecklin, M.C., and Zenobi, R., 2010. Degradation of volatile organic compounds in a non- thermal plasma air purifier. Chemosphere; 79: 124-130.
Seitz, F., Pollmann, K., Mackenzie, K., and Opiolka, S., 2011. Photooxidation in combination with nanotechnologies – principles, developments and R&D approaches of an advanced Technology for water and air treatment - Uviblox. Journal of Advanced Oxidation Technologies; 14: 260-266.
Sherwood, E., Hope, D., Whitmore, J., Ottesen, C., and Davis, C., 1999. Integrated mini- environment design best practices. Technology Transfer #99033693A-ENG: Sematech Inc.; Texas, USA.
Shiue, A., Den, W., Kang, Y.-H., Hu, S.-C., Jou, G.-T., and Lin, C.-H., Hu, V., and Lin, S.-I., 2011. Validation and application of adsorption breakthrough models for the chemical filters used in the make-up air unit (MAU) of a cleanroom. Building and Environment; 46: 468-477.

Sircar, S., and Myers, A.L., 2003. Handbook of zeolite science and technology - Gas separation by zeolites. New York, USA: Marcel Dekker Inc., pp.1354-1406.
Spurny, K.R., 2000. Atmospheric condensation nuclei P. J. Coulier 1875 and J. Aitken 1880 (historical review). Aerosol Science and Technology; 32(3): 243-248.
Seguin, K., 2004. Evaluating efficiencies of gas-phase chemical or AMC filters. Solid State Technology; 47(1): 56.
Tsai, C.-J., Chang, C.-T., Liu, T.-W., Huang, C.-C., Chien, C.-L., and Chein, H.-M., 2004. Emission characteristics and control efficiency of acidic and basic gases and aerosols from packed towers. Atmospheric Environment; 38: 643–646.
U.S. Army Corps of Engineers, DG 1110-1-2, 2001. Adsorption design guide. Washington, D.C. 20314-1000. pp.2-19.
U.S. Environmental Protection Agency, EPA/625/R-98/004, 1998. Handbook on advanced photochemical oxidation processes. U.S. Environmental Protection Agency, Cincinnati, OH, USA.
U.S. Environmental Protection Agency, EPA/625/R-01/004, 2001. Handbook on advanced nonphotochemical oxidation processes. U.S. Environmental Protection Agency, Cincinnati, OH, USA.
Van Zant, P., 2004. Microchip fabrication. 5th ed. New York, USA: McGraw Hill Companies, pp.98-104.
Wakamatsu, H., Matsuki, M., Tanaka, N., Ogata, H., Iba, H., and Murata, K., 2000. High efficiency airborne molecular contaminants removal technology by a new cooled-type 2-stage high-speed air washer method. In: Proceedings of the 9th international symposium on semiconductor manufacturing, 26-28 September 2000, Tokyo, Japan: IEEE Conference Publications, pp.289-292.
Wakamatsu, H. Matsuki, M., Tanaka, N., Iwanaga, Y., and Murata, K., 2001. New chemical removing and air cooling technology for clean room recirculation air using chilled pure water showering method. In: Proceedings of the 2001 IEEE international semiconductor manufacturing symposium, 8-10 October 2001, San Jose, CA, USA: IEEE Conference Publications, pp.485-488.
White, D. and Heinrici, C., 2002. What is clean, dry air? Technical Article Program #106, Compressed Air and Gas institute, Cleveland, OH, USA.
Wu, B.-J., Bai, H.-L., Lin, I.-K., and Liu, H.-H., 2012. Metal corrosion of Al-Si-Cu pattern wafer due to chloride ion contaminants. Aerosol and Air Quality Research; 12: 104-112.
Wu, C.-C. and Lee, W.-M., 2004. Oxidation of volatile organic compounds by negative air ions. Atmospheric Environment; 38: 6287-6295.
Yeh, C.-F., Hsiao, C.-W., Lin, S.-J., Xie Z.-M., Kusumi, T., Aomi, H., Kaneko, H., Da, B.-T., and Tsai, M.-S., 2002. Impact of airborne molecular contamination to nano-device performance. In: Proceedings of the 2002 2nd IEEE conference on nanotechnology, 26-28 August 2002, Washington DC, USA: IEEE Conference Publications, pp.461-464.
Yu, K.-P. and Lee, W.-M., 2007. Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3). Applied Catalysis B: Environmental; 75 (1-2): 29-38.
Zhang, P., Liang, F., Yu, G., Chen, Q., and Zhu, W., 2003. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. Journal of Photochemistry and Photobiology A: Chemistry; 156: 189-194.
Aquafine, 2007a. Ultraviolet water treatment fundamentals and its many applications. Available: http://www.heco.com/vcmcontent/StaticFiles/pdf/EricPeterson.pdf [Accessed: 29 Nov. 2012].
Aquafine, 2007b. UV Technology for Microelectronics. Available: http://www.epswater.ie/_fileupload/TSG%20219-07%20UV%20Technology%20for%20Microelectronics%20Presentation.pdf [Accessed: 29 Nov. 2012].
H. Ikeuchi, KBN 80063. Available: http://www.kirinoikeuchi.co.jp/eng/catalogs/KBN050907E.pdf [Accessed: 29 Jan. 2013].
Philips, 2008. TUV 130W XPT SE Ozone. The power to purify water and air with light. Available: http://www.lampadasespeciais.com.br/catalogos/Lamp%20Tubo%20Quartzo%20-PHILIPS%20%20nov%202008.pdf [Accessed: 6 Jul. 2012].
Sigma-Aldrich, 2012. AL-143 mineral adsorbents, filter agents and drying agents. Available: http://www.sigmaaldrich.com/chemistry/chemical-synthesis/learning-center/technical-bulletins/al-1430/molecular-sieves.html [Accessed: 15 Nov. 2012].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62901-
dc.description.abstract氣懸分子污染物 (AMC) 指的是空氣中分子型態的污染物質,這些污染物質以氣體或蒸氣等形式存在,並且能夠穿透潔淨室中傳統的高效率微粒空氣濾網,對製程良率產生全面性的衝擊。以半導體晶圓廠為例,潔淨室中 AMC 的主要來源包括:潔淨室內的工作人員、設備或維修使用的化學品、管線的異常洩漏或排放、工程材料釋放的微量氣體、和從外氣帶進來的各種污染物質。
當半導體製程進展到奈米技術以後,「氣懸分子污染」對製程之危害已經超越「氣懸微粒污染」問題,成為奈米技術研發及奈米製程環境控制的首要難題。為了完全控制高科技廠房潔淨室之 AMC 問題,本研究提出以「超純氣 (UPA) 系統」取代現有潔淨室空氣淨化系統的解決方案,最終的目標在建構可以達到 10 ppt 潔淨等級的 UPA 系統,提供奈米技術研發和奈米製程所需要的微污染控制環境,期望完全解決高科技研發及製程環境所面臨的 AMC 問題。
UPA 系統的概念是整合超純水 (UPW) 製程和微型潔淨環境的創新構想,由於空氣和水都是典型的流體。所以 UPA 系統的原始模型嘗試引用 UPW 系統的超純水處理流程,將空氣中的污染物質類比為水中的污染物質,模擬不同污染物質在水處理系統中的反應機制,以類似超純水處理的流程,將空氣中的污染物質分為三個程序、分段去除,以達到超純淨等級的 UPA。最後;再將 UPA 以高純淨管線輸送到微型潔淨環境提供製程設備使用。
UPA 系統規劃由三個模組所構成,針對空氣中較難去除的可凝結矽化合物或碳氫化合物,以下列三個程序分段處理:(1). 首先讓氣懸分子污染物流經充滿氣膠水霧的空間,然後以UV185+254nm 提供的能量將部分污染物直接轉換為水或二氧化碳,或是將部分污染物的化學鍵結打斷,重新和氫氧自由基結合而形成親水性物質。(2). 經過前項光氧化反應後的殘餘親水性污染物接著進入第二階段的壓縮及冷凝製程,利用氣膠的成核、凝結、和成長的過程,使這些微量的氣懸分子污染物在壓縮空氣的環境中增加和液滴氣膠碰撞的機率而成長為小水滴,然後再利用除濕裝置去除空氣中的小水滴。冷凝的過程中,可溶於水的氣懸分子污染物也將隨著冷凝水的排放而一併自空氣中移除。(3). 最後那些無法經由上述兩個階段處理的微量氣懸分子污染物,則可以選擇合適的分子篩及終端過濾器去除。
另外在應用的構想上,UPA 產品是以專用的高純淨管線直接供應到微型潔淨環境給製程設備使用,這樣的方法完全排除 UPA 和潔淨室空氣接觸而受到污染的機會,因此可以為奈米技術研發及製程環境提供穩定的超高品質空氣。
本研究目前已經完成 UPA 前處理及後處理系統的驗證實驗,依據 29 次重複實驗的結果顯示:UPA 系統可以在 8 秒內,將二甲苯 (xylene) 由187 ppb 降低至 0.1 ppb,這個結果在幾乎無統計誤差的情況下,其 (xylene) 去除效率達 99.97%。
zh_TW
dc.description.abstractAs semiconductor processes advance into the nano-technology era, Airborne Molecular Contamination (AMC) has become a major problem in nano-technology development and manufacturing facilities. To deal with this problem, a prototype Ultra-Pure Air (UPA) system with a targeted air quality impurity level of 10 ppt was experimentally developed.

The prototype UPA system presently comprises two process modules; pre-treatment and post-treatment. In order to deal with hard-to-remove organic molecular substances within the air, UV185+254nm is used in the pre-treatment module to provide the energy required to reduce the molecules into broken-up pieces of transitional compounds. Aerosol water droplets are introduced at the same time, combining with transitional compounds to form hydrophilic substances. After the “immersing photochemical oxidation” reaction, the hydrophilic contaminants go through the compression and condensation processes which make up the post-treatment module. During the air compression and condensation processes, the collision probability of the aerosols is highly increased between the contaminants and water droplets. Later, a dehumidification process removes the water droplets from within the condensed air; at this point, the contaminants have dissolved in the water and so they are removed at the same time. These pre-treatment and post-treatment processes yield air quality levels of less than 1 ppb of volatile organic compound, the minimum detection limit for a measuring analyzer.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:14:15Z (GMT). No. of bitstreams: 1
ntu-102-D96521028-1.pdf: 5171951 bytes, checksum: 57f0446e8bffb3c6e553dbd9219db085 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 ... i
誌謝 ... ii
ABSTRACT ... iii
中文摘要 ... iv
TABLE OF CONTENTS ... vi
LIST OF FIGURES ... ix
LIST OF TABLES ... xii
CHAPTER 1: INTRODUCTION ... 1
1.1 AMC AND CHEMICAL FILTERS ... 4
1.2 RESEARCH OBJECTIVES ... 11
1.3 RESEARCH APPROACH ... 12
1.4 ORGANIZATION OF THIS DISSERTATION ... 14
1.5 SUMMARY ... 15
CHAPTER 2: RESEARCH BACKGROUND ... 17
2.1 AMC STANDARDS AND CONTROL REQUIREMENTS ... 18
2.2 AIR QUALITY STANDARDS ... 24
2.3 INDOOR CONTAMINATION EVALUATION MODEL ... 28
2.4 UPA HYPOTHESIS ... 35
2.5 AMBIENT AIR QUALITY SURVEY ... 37
2.6 CLEAN AIR STRATEGIES ... 39
2.7 UPA SYSTEM CONFIGURATION ... 45
CHAPTER 3: UPA METHODOLOGY ... 47
3.1 UPA PRE-TREATMENT MODULE ... 48
3.2 UPA POST-TREATMENT MODULE ... 52
3.3 UPA POLISH MODULE ... 55
3.4 SUMMARY OF UPA METHODOLOGY ... 59
CHAPTER 4: PRELIMINARY STUDIES AND FINDINGS ... 61
4.1 EARLY STAGE FINDINGS ... 63
4.2 PRELIMINARY STUDY – ROUND 1&2 ... 67
4.3 PRELIMINARY STUDY – ROUND 3&4 ... 69
4.4 PRELIMINARY STUDY – ROUND 5 ... 71
4.5 SUMMARY ... 73
CHAPTER 5: PRE-TREATMENT EXPERIMENTS ... 77
5.1 EXPERIMENT APPARATUS AND PROCESSES ... 78
5.2 EXPERIMENT CONDITIONS ... 81
5.3 RESULTS OF iUV EXPERIMENTS ... 83
5.4 SUMMARY ... 88
CHAPTER 6: PRE AND POST-TREATMENT EXPERIMENTS ... 89
6.1 SETUP OF EXPERIMENT EQUIPMENT ... 90
6.2 CHEMICAL MEASURED AND ITS WATER SOLUBILITY ... 93
6.3 RESULTS OF BASELINE EXAMINATION ... 95
6.4 RESULTS OF XYLENE EXPERIMENTS ... 97
6.5 SUMMARY ... 103
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS ... 105
7.1 CONCLUSIONS ... 106
7.2 CONTRIBUTIONS ... 107
7.3 LIMITATIONS ... 108
7.4 RECOMMENDATIONS ... 109
REFERCNCES ... 113
APPENDICES ... 121
dc.language.isoen
dc.title奈米製程研發暨製造環境之超純氣系統研究zh_TW
dc.titleUltra-Pure Air (UPA) System Research for Nano-Processing Environmentsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee郭斯傑(Sy-Jye Guo),曾惠斌(Hui-Ping Tserng),陳柏翰(Po-Han Chen),王維志(Wei-Chih Wang),胡石政(Shih-Cheng Hu)
dc.subject.keyword奈米技術,氣懸分子污染,超純氣,光化學氧化,微型潔淨環境,zh_TW
dc.subject.keywordAMC,nano-technology,UPA,ultra-pure air,immersing photochemical oxidation,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2013-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved