請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62894
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝旭亮 | |
dc.contributor.author | Ting-Yu Hsu | en |
dc.contributor.author | 許庭瑀 | zh_TW |
dc.date.accessioned | 2021-06-16T16:14:00Z | - |
dc.date.available | 2022-06-09 | |
dc.date.copyright | 2020-06-09 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-05-28 | |
dc.identifier.citation | Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in arabidopsis. Plant Cell 16: 3460–3479.
Boylan, M.T. and Quail, P.H. (1996). Are the phytochromes protein kinases? Protoplasma 195: 12–17. Casal, J.J., Candia, A.N., and Sellaro, R. (2014). Light perception and signalling by phytochrome A. J. Exp. Bot. 65: 2835–2845. Chen, C.Y., Ho, S.S., Kuo, T.Y., Hsieh, H.L., and Cheng, Y.S. (2017). Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc. Natl. Acad. Sci. U. S. A. Chen, D.L., Yeh, K., and Abel, S. (2016). Aux / IAA Proteins Are Phosphorylated by Phytochrome in Vitro. Plant. P. 124(4):1728-38 Chen, H.J., Fu, T.Y., Yang, S.L., and Hsieh, H.L. (2018). FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLoS Genet. 14: 1–19. Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol. 143: 1189–1202. Chen, M., Tao, Y., Lim, J., Shaw, A., and Chory, J. (2005). Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Curr. Biol. 15: 637–642. Clough, R.C. and Vierstra, R.D. (1997). Phytochrome degradation. Plant, Cell Environ. 20: 713–721. Clough, S.J. and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743. Debrieux, D. and Fankhauser, C. (2010). Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus. Plant Mol. Biol. 73: 687–695. Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D., and Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science (80-.). 284: 1539–1541. Feys, B.J.F., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6: 751–759. Genoud, T., Schweizer, F., Tscheuschler, A., Debrieux, D., Casal, J.J., Schäfer, E., Hiltbrunner, A., and Fankhauser, C. (2008). FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLoS Genet. 4. Han, Y.J., Kim, H.S., Kim, Y.M., Shin, A.Y., Lee, S.S., Bhoo, S.H., Song, P.S., and Kim, J.Il (2010). Functional characterization of phytochrome autophosphorylation in plant light signaling. Plant Cell Physiol. 51: 596–609. Han, Y.J., Kim, H.S., Song, P.S., and Kim, J.Il (2010). Autophosphorylation desensitizes phytochrome signal transduction. Plant Signal. Behav. 5: 868–871. Hoecker, U., Xu, Y., and Quail, P.H. (1998). Spa1: A new genetic locus involved in phytochrome aspecific signal transduction. Plant Cell 10: 19–33. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14: 1958–1970. Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13: 2017–2027. Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., and Okada, K. (2001). The defective in anther dehiscence1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191–2209. Kim, S.T., Cho, K.S., Kim, S.G., Kang, S.Y., and Kang, K.Y. (2003). A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol. Cells 16: 224–231. Lapko, V.N., Jiang, X.Y., Smith, D.L., and Song, P.S. (1997). Posttranslational modification of oat phytochrome A: Phosphorylation of a specific serine in a multiple serine cluster. Biochemistry 36: 10595–10599. Li, T., Jia, K.P., Lian, H.L., Yang, X., Li, L., and Yang, H.Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun. 454: 78–83. Lorenzo,O, Chico, J., Sánchez-Serran, J., and Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis Author ( s ): Oscar Lorenzo , Jose M . Chico, Jose J . Sánchez-Serrano and Roberto Solano Published. Plant Cell 16: 1938–1950. Möglich, A., Yang, X., Ayers, R.A., and Moffat, K. (2010). Structure and Function of Plant Photoreceptors. Annu. Rev. Plant Biol. 61: 21–47. Nanao, M.H. and Jez, J.M. (2012). by GH3 Proteins. 275: 1708–1712. Podolec, R. and Ulm, R. (2018). Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 45: 18–25. Quail, P.H. (1997). An emerging molecular map of the phytochromes. Plant, Cell Environ. 20: 657–665. Riemann, M., Riemann, M., and Takano, M. (2008). Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant, Cell Environ. 31: 783–792. Riemann, M., Bouyer, D., Hisada, A., Müller, A., Yatou, O., Weiler, E.W., Takano, M., Furuya, M., and Nick, P. (2009). Phytochrome A requires jasmonate for photodestruction. Planta 229: 1035–1045. Robson, F., Okamoto, H., Patrick, E., Sue-Ré, H., Wasternack, C., Brearley, C., and Turner, J.G. (2010). Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22: 1143–1160. Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., and Choi, Y.Do (2001). Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. U. S. A. 98: 4788–4793. Shen, Y., Khanna, R., Carle, C.M., and Quail, P.H. (2007). Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol. 145: 1043–1051. Shin, A.Y., Han, Y.J., Baek, A., Ahn, T., Kim, S.Y., Nguyen, T.S., Son, M., Lee, K.W., Shen, Y., Song, P.S., and Kim, J.Il (2016). Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat. Commun. 7. Soh, M.S., Hong, S.H., Hanzawa, H., Furuya, M., and Nam, H.G. (1998). Genetic identification of FIN2, a far red light-specific signaling component of Arabidopsis thaliana. Plant J. 16: 411–419. Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U. S. A. 89: 6837–6840. Staswick, P.E., Staswick, P.E., Tiryaki, I., Tiryaki, I., Rowe, M.L., and Rowe, M.L. (2002). Jasmonate Response Locus. Plant Cell 14: 1405–1415. Sullivan, J.A. and Deng, X.W. (2003). From seed to seed: The role of photoreceptors in Arabidopsis development. Dev. Biol. 260: 289–297. Wang, J.G., Chen, C.H., Chien, C.Te, and Hsieh, H.L. (2011). FAR-RED insensitive219 Modulates constitutive Photomorphogenic1 activity via physical interaction to regulate hypocotyl elongation in arabidopsis. Plant Physiol. 156: 631–646. Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P. (1993). Phytochrome A null mutant of arabidopsis display a wild-type phenotype in white light. Plant Cell 5: 757–768. Wong, Y.-S. and Lagarias, J.C. (1989). Affinity labeling of Avena phytochrome with ATP analogs. Proc. Natl. Acad. Sci. 86: 3469–3473. Yeh, K.C. and Lagarias, J.C. (1998). Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. U. S. A. 95: 13976–13981. Zhai, Q., Li, C.B., Zheng, W., Wu, X., Zhao, J., Zhou, G., Jiang, H., Sun, J., Lou, Y., and Li, C. (2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in arabidopsis. Plant Cell Physiol. 48: 1061–1071. 蕭蔚。(2012)。FIN219/JAR1藉由酪蛋白激酶2之磷酸化調控遠紅光及茉莉酸訊息溝通路徑。國立台灣大學碩士論文。 蔡易宏。(2016)。阿拉伯芥中FIN219/JAR1蛋白質磷酸化修飾在光與茉莉酸訊息傳遞中的功能性研究。國立台灣大學碩士論文。 江漢威。(2017)。阿拉伯芥FIN219、光敏素A與AtGSTU17在遠紅光與荷爾蒙間相互作用之功能性研究。國立台灣大學博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62894 | - |
dc.description.abstract | 植物是屬於光合自營生物,能夠藉由感知光源來調控植物的發育與生理反應。在植物中,具有許多不同種類的光受體來共同調控植物幼苗發育。其中,光敏素A能專一地感知遠紅光,並且藉由與COP1蛋白質的交互作用,來調控植物幼苗的光型態發生。FAR-RED INSENSITIVE 219 (FIN219)/JAR1除了作為催化茉莉酸(JA)與胺基酸Isoleucine(Ile)結合成JA-Ile的合成酵素外,同時也扮演調節遠紅光與茉莉酸訊息傳遞的重要角色。在先前研究中,已知phyA具有磷酸激酶(kinase)的活性,並已確認參與反應的受質。在過去的研究成果中,phyA被認為可能會參與調控FIN219的磷酸化,並發現FIN219磷酸化與否會影響其自身酵素活性。然而,FIN219的磷酸化參與在遠紅光與茉莉酸訊息傳遞的調控機制尚未明瞭。為了更加了解FIN219受phyA磷酸化的調控機制,本研究進行試管外的磷酸化實驗。結果顯示FIN219的N端區域可能受到phyA的磷酸化。進一步藉由建立磷酸化位點改變的轉殖株,來了解磷酸化與否對於植物體的影響;結果發現,僅有去磷酸化FIN219的轉殖株才能互補fin219-2的外表型,而磷酸化FIN219的轉殖株則否。另外,去磷酸化FIN219轉殖株也會造成遠紅光與茉莉酸訊息傳遞相關基因增加表現,而磷酸化FIN219轉殖株則無法。綜合上述,去磷酸化FIN219可以增強茉莉酸與遠紅光訊息傳遞,而磷酸化FIN219則不具有此功能。因此,推測FIN219磷酸化可作為一個調控遠紅光和茉莉酸訊息傳遞的開關。 | zh_TW |
dc.description.abstract | As photoautotrophs, plants have the capability to perceive light, and regulates internal developmental and physiological responses. Several photoreceptors co-regulate seedling growth and development. Among them, phyA perceives FR light specifically and regulates FR light signaling by interacting with various regulators, including CONSTITUTIVE PHOTOMOPHOGENIC1 (COP1) to promote photomorphogenic development of seedlings. As a JA-conjugating enzyme, FIN219/JAR1 is a key component to crosslink JA and FR light signaling. Previously, it has been reported that phyA has kinase activities and its substrates were identified. According to our previous results, phyA is potentially involved in the phosphorylation of FIN219 and the phosphorylation of FIN219 would alter its activity. However, the regulatory mechanism of FIN219 phosphorylation under FR light and JA signaling is still unknown. To further identify the phosphorylation of FIN219 by phyA under FR, an in vitro kinase assay was performed. The results showed that the N-terminal region of FIN219 would be phosphorylated by phyA. Furthermore, the transgenic lines with mutations in phosphorylation sites were generated. Among them, only the dephosphorylated FIN219 transgenic lines, 35S:FIN219-S100A/fin219-2, showed a rescue of rescued fin219-2 mutant phenotype, but the phosphorylated FIN219 transgenic lines, 35S:FIN219-S100D/fin219-2, did not. Furthermore, the JA and FR light responsive genes were upregulated in 35S:FIN219-S100A/fin219-2, but not in 35S:FIN219-S100D/fin219-2. In summary, dephosphorylated FIN219 could enhance the JA and FR light responses, while phosphorylated FIN219 could not. Collectively, these results suggest that phyA-mediated phosphorylation of FIN219 could serve as a switch to regulate FR light and jasmonate signaling. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:14:00Z (GMT). No. of bitstreams: 1 ntu-109-R06b42007-1.pdf: 3492526 bytes, checksum: 87ce8674cdbb3cbead43c38993e8d458 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審訂書 I
誌謝 II 中文摘要 III Abstract IV Contents VI List of Figures IX List of Tables XI Introduction 1 1. Light-regulated plant growth and development 1 2. The role of phyA under FR light signaling and JA signaling 1 3. FIN219, an integrator participated in FR and JA signaling pathway 3 4. The relationship between phyA and FIN219 5 5. The motivation and purpose of this study 7 Materials and Methods 8 1. Plant materials 8 2. Arabidopsis transformation and plasmid construction 8 3. Seeds preparation and growth conditions 8 4. Protein extraction and immunoblots 9 5. In vitro kinase assay 10 6. Bimolecular florescence complementation (BiFC) 10 7. Analysis of gene expression 11 8. Site-directed mutagenesis 11 9. Pull down assay 12 10. Co-immunoprecipitation (Co-IP) 12 11. Kinase inhibitor treatment 12 12. MG132 treatment 13 13. Measurement of hypocotyl length 13 14. Measurement of pigment contents 13 15. Plant pathogen inoculation assay 14 Results 15 1. Phosphorylation of FIN219 by phytochrome A in vitro 15 2. phyA affects the phosphorylation and degradation of FIN219 under far-red light 16 3. Identification of FIN219 phosphorylation sites 18 4. Ectopic expression of the dephosphorylated FIN219 could rescue fin219-2 mutant in response to FR light and MeJA 19 5. The phosphorylated FIN219 was less sensitive to FR light 22 6. Changes in the phosphorylation status of FIN219 affected JA-mediated physiological responses 24 Discussion 26 1. phyA could be a protein kinase of FIN219 26 2. The phosphorylation and degradation of FIN219 were regulated by phyA 28 3. The phosphorylated FIN219 downregulated JA responses 29 4. The light responses in fin219-2 were rescued by the dephosphorylated FIN219 31 5. FIN219 and phyA mutually regulate FR light signaling and JA signaling via a mechanism of phosphorylation under FR condition 33 References 52 List of Figures Figure 1. FIN219 directly interacts with phyA in the cytoplasm. 36 Figure 2. FIN219 is phosphorylated by phytochrome A. 38 Figure 3. phyA is necessary for FR-induced phosphorylation of FIN219 in vivo. 39 Figure 4. phyA is involved in 26S proteasome-mediated degradation of FIN219. 40 Figure 5. Identification of FIN219 phosphorylation sites. 41 Figure 6. Serine 100 in FIN219 is the potential phosphorylation site of FIN219. 42 Figure 7. Ectopic expression of 35S:FIN219-S100A in fin219-2 mutant can rescue the insensitivity of fin219-2 to MeJA under FR light. 43 Figure 8. Ectopic expression of 35S:FIN219-S100A in fin219-2 can rescue the insensitivity of the root response in fin219-2 to MeJA under FR light. 44 Figure 9. JA responsive genes are upregulated in 35S:FIN219-S100A/fin219-2 under FR light with MeJA treatment. 45 Figure 10. The anthocyanin accumulation was rescued in 35S:FIN219-S100A /fin219-2 with MeJA treatment. 46 Figure 11. Ectopic expression of 35S:FIN219-S100A in fin219-2 can rescue its long-hypocotyl phenotype under FR light. 47 Figure 12. Ectopic expression of 35S:FIN219-S100A in fin219-2 could rescue its phenotype in FR-blockage of greening. 48 Figure 13. Light responsive genes are upregulated in 35S:FIN219-S100A/fin219-2. 49 Figure 14. Ectopic expression of 35S:FIN219-S100A in fin219-2 results in a resistant response to Pcc infection. 50 Figure 15. A proposed model for the effects of the phosphorylation status of FIN219 on FR responses and JA responses. 51 Supplemental figure 1. There were no significant different between the hypocotyl length in mutated FIN219 transgenic lines under Col-0 background. 61 Supplemental figure 2. FIN219 driven by 35S promoter cause slight overexpression. Supplemental figure 3. The mutation of FIN219 on Serine100 had no effects on the interaction between FIN219 and phyA. 63 List of Tables Table 1. The primers for cloning 64 Table 2. The primers for RT-PCR and qPCR analysis 65 | |
dc.language.iso | zh-TW | |
dc.title | 阿拉伯芥中光敏素A對於FIN219/JAR1蛋白質
磷酸化修飾在遠紅光與茉莉酸訊息傳遞的功能性研究 | zh_TW |
dc.title | Functional studies of phosphorylation of FIN219/JAR1 by phytochrome A in Arabidopsis in response to
far-red light and jasmonate signaling | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳克強,李金美,吳素幸,涂世隆 | |
dc.subject.keyword | 磷酸化,遠紅光,茉莉酸,FIN219/JAR1,phyA, | zh_TW |
dc.subject.keyword | phosphorylation,far-red light,jasmonate,FIN219/JAR1,phyA, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU202000888 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-05-29 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。