Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62886
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬
dc.contributor.authorHsiao-Pu Changen
dc.contributor.author張效溥zh_TW
dc.date.accessioned2021-06-16T16:13:42Z-
dc.date.available2015-02-01
dc.date.copyright2013-03-06
dc.date.issued2013
dc.date.submitted2013-02-07
dc.identifier.citationREFERENCES
[1] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science,
vol. 308, pp. 1274-1278, May. 2005.
[2] D. A. Steigerwald, J. C. Bhat , D. Collins, R. M. Fletcher, M. O. Holcomb, M. J.
Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting
technology,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8,
pp. 310-320, Mar./Apr. 2002.
[3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped
organic thin films,” Journal of Applied Physics, vol. 65, pp. 3610-3616, May.
1989.
[4] S. Moller and S. R. Forrest, “Improved light out-coupling in organic light
emitting diodes employing ordered microlens arrays,” Journal of Applied
Physics, vol. 91, pp. 3324-3327, Mar. 2002.
[5] T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Thin-film waveguiding mode
light extraction in organic electroluminescent device using high refractive index
substrate,” Journal of Applied Physics, vol. 97, pp. 054505-1-054505-6, Feb.
2005.
[6] S.-H. Eom, E. Wrzesniewski and J. Xue, “Close-packed hemispherical microlens
arrays for light extraction enhancement in organic light-emitting devices,”
Organic Electronics, vol. 12, pp. 472-476, Mar. 2011.
[7] E. Wrzesniewski , S.-H. Eom , W. Cao , W. T. Hammond , S. Lee , E. P.
Douglas , and J. Xue, “Enhancing light extraction in top-emitting organic
light-emitting devices using molded transparent polymer microlens arrays,”
Small, vol. 8, pp. 2647-2651 Sep. 2012.
[8] C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling
efficiency of organic light-emitting diodes by backside substrate modification,”
Applied Physics Letters, vol. 76, pp. 1650-1652, Mar. 2000.
[9] H. Greiner, “Light extraction from organic light emitting diode substrates:
simulation and experiment,” Japanese Journal of Applied Physics, vol. 46, pp.
4125–4137, Jul. 2007.
[10] M.-K. Wei and I.-L. Su, “Method to evaluate the enhancement of luminance
efficiency in planar OLED light emitting devices for microlens array,” Optics
Express, vol. 12, pp. 5777-5782, Nov. 2004.
[11] H. Peng, Y. L. Ho, X.-J. Yu, M. Wong and H.-S. Kwok, “Coupling efficiency
enhancement in organic light-emitting devices using microlens array—Theory
and Experiment,” Journal of Display Technology, vol. 1, pp. 278-282, Dec.
2005.
105
[12] D. Kim, H. Lee, N. Cho, Y. Sung and G. Yeom, “Effect of GaN microlens array
on efficiency of GaN-based blue-light-emitting diodes,” Japanese Journal of
Applied Physics, vol. 44, pp. L18-L20, Dec. 2005.
[13] Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced
outcoupling via microlenses fabricated by imprint lithography,” Journal of
Applied Physics, vol. 100, pp. 073106-1- 073106-6, Oct. 2006.
[14] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson and M. D.
Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated
sapphire microlenses,” Applied Physics Letters, vol. 84, pp. 2253-2255, Mar.
2004.
[15] M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin and H. X. Jiang, “Nitride
deep-ultraviolet light-emitting diodes with microlens array,” Applied Physics
Letters, vol. 86, pp. 173504-1-173504-3, Apr. 2005.
[16] Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew and J. F. Gilchrist,
“Enhancement of light extraction efficiency of InGaN quantum wells light
emitting diodes using SiO2/polystyrene microlens arrays,” Applied Physics
Letters, vol. 91, pp. 221107-1- 221107-3, Nov. 2007.
[17] M. K. Lee, C. L. Ho and C. H. Fan, “High light extraction efficiency of gallium
nitride light emitting diode with silicon oxide hemispherical microlens,” Applied
Physics Letters, vol. 92, pp. 061103-1- 061103-3, Feb. 2008.
[18] P. Melpignano, V. Biondo, S. Sinesi, M. T. Gale, S. Westenhofer, M. Murgia, S.
Caria and R. Zamboni, “Efficient light extraction and beam shaping from
flexible, optically integrated organic light-emitting diodes,” Applied Physics
Letters, vol. 88, pp. 153514-1- 153514-3, Apr. 2006.
[19] M. K. Lee and K. K. Kuo, Electrochem. “Microlens array on sapphire substrate
prepared by FIB to enhance electroluminescence of GaN/sapphire blue LED,”
Electrochemical and Solid-State Letters, vol. 10, pp. H20-H22, 2007.
[20] Y. Sun and S.R. Forrest, “Enhanced light out-coupling of organic light-emitting
devices using embedded low-index grids,” Nature Photonics, vol.2, pp. 483-487,
Jul. 2008.
[21] M.-W. Chang, H. S. Won, H. Kim and J. M. Lee, “Enhancement of light
extraction efficiency in light-emitting diodes with prism-type textured top
surface,” Japanese Journal of Applied Physics, vol.46, pp. 6673-6675, Oct.
2007.
[22] P. Kumar, A. Khanna, S.-Y. Son, J. S. Lee and R. K. Singh, “Analysis of light
out-coupling from microlens array,” Optics Communications, vol. 284, pp.
4279-4282, Jun. 2011.
[23] K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee and M.-K. Wei,
106
“Emitter apodization dependent angular luminance enhancement of
microlens-array film attached organic light-emitting devices,” Optics Express,
vol. 18, pp. 3238-3243, Feb. 2010.
[24] H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho and C.-Y. Lin,
“Optical characteristics of the OLED with microlens array film attachment,”
Proceedings of SPIE, vol. 6655, pp. H1-H-6, Oct. 2007.
[25] K.-Y. Chen, J.-H. Lee, M.-K. Wei, Y.-T. Chang, Y.-H. Ho, J.-R. Lin and H.-Y.
Lin, “Device-dependent angular luminance enhancement and optical responses
of organic light-emitting devices with a microlens-array film,” Journal of the
SID, vol. 19, pp. 21-28, Jan. 2011.
[26] J.-H. Lee, Y.-H. Ho, K.-Y. Chen, H.-Y. Lin, J.-H. Fang, S.-C. Hsu, J.-R. Lin
and M.-K. Wei, “Efficiency improvement and image quality of organic
light-emitting display by attaching cylindrical microlens arrays,” Optics Express,
vol. 16, pp. 21184-21190, Dec. 2008.
[27] M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu,
H.-Y. Lin, J.-H. Tsai and T.-C. Wu, “Efficiency improvement and spectral shift
of an organic light-emitting device by attaching a hexagon-based microlens
array,” Journal of Optics A: Pure and Applied Optics, vol. 10, pp.
055302-1-055302-9, Mar. 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62886-
dc.description.abstract在本論文中,我們建立了一套演算法,針對微透鏡陣列結構將幾何光學的光
追跡與傳遞矩陣法整合在一起,可同時考慮加了微透鏡陣列的OLED 中的幾何光
學與波動光學特性,並且討論不同的微透鏡陣列結構對於光萃取效率與遠場光形
的影響。我們計算了光線在結構中經過0∼4 次反射的出光效率,發現若只考慮
第一次穿透的話,加入微透鏡陣列以後出光效率的提升相當有限。在結構中來回
反射的光線對於出光效率的提升扮演著重要的角色,特別是經過第一次反射的第
二次穿透光對於出光效率有重要的影響。我們針對三組實際的OLED 結構進行模
擬,找出最高光萃取效率的結構。在我們的模擬結果中光萃取效率有25%∼75%
的提升,遠場的正向光強最大約有25%∼40%的提升。我們發現如果基板中的場
形較集中在正向的話,使用透鏡高度比較低的透鏡可以得到較大的提升。如果基
板中的場形較分散的話,使用透鏡高度比較高的透鏡可以得到較大的提升。
zh_TW
dc.description.abstractIn this thesis, we developed an algorithm which combines transfer matrix method
and ray-tracing for the modeling of planar light-emitting devices with microlens array.
It can calculate geometrical optics and wave optics characteristics in the LED and
OLED simultaneously. We also discussed the effect of microlens array in light
extraction efficiency and far field pattern. We calculated the out-coupling efficiency
with 0~4 times reflection in structure. The out-coupling enhancement by microlens
arrays is very limited when only first transmission is considered. Multiple reflections
play critical roles in the enhancement, especially the second out-coupling due to the
first reflection. In our simulation, we calculated three groups of actual OLED
structures, finding the best structure of microlens array for light extraction efficiency.
In our result, light extraction efficiency have 25% to 75% enhancement and normal
far field intensity have 25% to 40% enhancement. We found that if the field pattern in
substrate is concentrated around normal direction, higher enhancement is obtained
from structures with lower height ratio. If the field pattern is dispersed, higher
enhancement is obtained from structures with higher height ratio.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:13:42Z (GMT). No. of bitstreams: 1
ntu-102-R99941125-1.pdf: 3968414 bytes, checksum: fe232b8c93fd6f121bf5853fd42cd5da (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
誌謝................................................................................................................................. i
中文摘要 ....................................................................................................................... ii
ABSTRACT ................................................................................................................. iii
目錄............................................................................................................................... iv
圖片目錄 ...................................................................................................................... vi
表格目錄 ....................................................................................................................... x
第一章 緒論 ................................................................................................................. 1
1.1 概要 ............................................................................................................... 1
1.2 研究動機 ....................................................................................................... 3
1.3 章節大綱 ....................................................................................................... 5
第二章 理論基礎 ......................................................................................................... 6
2.1 幾何光學 ....................................................................................................... 6
2.2 菲涅耳定律 ................................................................................................... 9
2.3 傳遞矩陣法 ................................................................................................. 15
第三章 光追跡演算法 ............................................................................................... 18
3.1 二維演算法 ................................................................................................. 20
3.2 三維演算法 ................................................................................................. 27
3.3 使用TracePro 驗證 ................................................................................... 31
3.3.1 TracePro ......................................................................................... 31
3.3.2 二維驗證結果 ................................................................................. 31
3.3.3 三維驗證結果 ................................................................................. 36
3.3.4 與實際光追跡不同之處 ................................................................. 39
第四章 模擬結果與討論 ........................................................................................... 41
4.1 一維微透鏡陣列 ......................................................................................... 41
4.1.1 結構參數對於穿透率之影響 ......................................................... 41
4.1.2 朗伯光源入射微透鏡陣列之穿透率 ............................................. 44
4.1.3 朗伯光源入射微透鏡陣列之遠場 ................................................. 50
4.1.4 微透鏡頂部形貌改變之結果 ......................................................... 53
4.2 二維微透鏡陣列(正方晶格) ..................................................................... 56
4.2.1 結構參數對於穿透率之影響 ......................................................... 56
4.2.2 朗伯光源入射正方晶格微透鏡陣列之穿透率 .............................. 65
4.2.3 朗伯光源入射正方晶格微透鏡陣列之遠場 ................................. 69
4.3 二維微透鏡陣列(三角晶格) ..................................................................... 72
4.3.1 結構參數對於穿透率之影響 ......................................................... 72
4.3.2 朗伯光源入射三角晶格微透鏡陣列之穿透率 .............................. 79
4.3.3 朗伯光源入射三角晶格微透鏡陣列之遠場 ................................. 83
v
4.4 OLED 模擬結果 ............................................................................................ 86
4.4.1 藍光OLED ........................................................................................ 87
4.4.2 綠光OLED ........................................................................................ 92
4.4.3 紅光OLED ........................................................................................ 97
第五章 結論 ............................................................................................................. 102
REFERENCE ........................................................................................................... 104
dc.language.isozh-TW
dc.subject有機發光二極體zh_TW
dc.subject光追跡zh_TW
dc.subject傳遞矩陣法zh_TW
dc.subject光萃取效率zh_TW
dc.subject遠場光型zh_TW
dc.subjectfar field patternen
dc.subjectray-tracingen
dc.subjectorganic light emitting diodeen
dc.subjecttransfer matrix methoden
dc.subjectlight extraction efficiencyen
dc.title含有微透鏡陣列的有機發光元件之分析zh_TW
dc.titleAnalysis of Organic Light‐Emitting Devices with Microlens Arraysen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖,賴志賢,王子建
dc.subject.keyword有機發光二極體,光追跡,傳遞矩陣法,光萃取效率,遠場光型,zh_TW
dc.subject.keywordorganic light emitting diode,ray-tracing,transfer matrix method,light extraction efficiency,far field pattern,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2013-02-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved