請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬 | |
| dc.contributor.author | Hsiao-Pu Chang | en |
| dc.contributor.author | 張效溥 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:13:42Z | - |
| dc.date.available | 2015-02-01 | |
| dc.date.copyright | 2013-03-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-07 | |
| dc.identifier.citation | REFERENCES
[1] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, pp. 1274-1278, May. 2005. [2] D. A. Steigerwald, J. C. Bhat , D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, pp. 310-320, Mar./Apr. 2002. [3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Journal of Applied Physics, vol. 65, pp. 3610-3616, May. 1989. [4] S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” Journal of Applied Physics, vol. 91, pp. 3324-3327, Mar. 2002. [5] T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Thin-film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate,” Journal of Applied Physics, vol. 97, pp. 054505-1-054505-6, Feb. 2005. [6] S.-H. Eom, E. Wrzesniewski and J. Xue, “Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices,” Organic Electronics, vol. 12, pp. 472-476, Mar. 2011. [7] E. Wrzesniewski , S.-H. Eom , W. Cao , W. T. Hammond , S. Lee , E. P. Douglas , and J. Xue, “Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays,” Small, vol. 8, pp. 2647-2651 Sep. 2012. [8] C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Applied Physics Letters, vol. 76, pp. 1650-1652, Mar. 2000. [9] H. Greiner, “Light extraction from organic light emitting diode substrates: simulation and experiment,” Japanese Journal of Applied Physics, vol. 46, pp. 4125–4137, Jul. 2007. [10] M.-K. Wei and I.-L. Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Optics Express, vol. 12, pp. 5777-5782, Nov. 2004. [11] H. Peng, Y. L. Ho, X.-J. Yu, M. Wong and H.-S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array—Theory and Experiment,” Journal of Display Technology, vol. 1, pp. 278-282, Dec. 2005. 105 [12] D. Kim, H. Lee, N. Cho, Y. Sung and G. Yeom, “Effect of GaN microlens array on efficiency of GaN-based blue-light-emitting diodes,” Japanese Journal of Applied Physics, vol. 44, pp. L18-L20, Dec. 2005. [13] Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” Journal of Applied Physics, vol. 100, pp. 073106-1- 073106-6, Oct. 2006. [14] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Applied Physics Letters, vol. 84, pp. 2253-2255, Mar. 2004. [15] M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin and H. X. Jiang, “Nitride deep-ultraviolet light-emitting diodes with microlens array,” Applied Physics Letters, vol. 86, pp. 173504-1-173504-3, Apr. 2005. [16] Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Applied Physics Letters, vol. 91, pp. 221107-1- 221107-3, Nov. 2007. [17] M. K. Lee, C. L. Ho and C. H. Fan, “High light extraction efficiency of gallium nitride light emitting diode with silicon oxide hemispherical microlens,” Applied Physics Letters, vol. 92, pp. 061103-1- 061103-3, Feb. 2008. [18] P. Melpignano, V. Biondo, S. Sinesi, M. T. Gale, S. Westenhofer, M. Murgia, S. Caria and R. Zamboni, “Efficient light extraction and beam shaping from flexible, optically integrated organic light-emitting diodes,” Applied Physics Letters, vol. 88, pp. 153514-1- 153514-3, Apr. 2006. [19] M. K. Lee and K. K. Kuo, Electrochem. “Microlens array on sapphire substrate prepared by FIB to enhance electroluminescence of GaN/sapphire blue LED,” Electrochemical and Solid-State Letters, vol. 10, pp. H20-H22, 2007. [20] Y. Sun and S.R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nature Photonics, vol.2, pp. 483-487, Jul. 2008. [21] M.-W. Chang, H. S. Won, H. Kim and J. M. Lee, “Enhancement of light extraction efficiency in light-emitting diodes with prism-type textured top surface,” Japanese Journal of Applied Physics, vol.46, pp. 6673-6675, Oct. 2007. [22] P. Kumar, A. Khanna, S.-Y. Son, J. S. Lee and R. K. Singh, “Analysis of light out-coupling from microlens array,” Optics Communications, vol. 284, pp. 4279-4282, Jun. 2011. [23] K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee and M.-K. Wei, 106 “Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices,” Optics Express, vol. 18, pp. 3238-3243, Feb. 2010. [24] H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proceedings of SPIE, vol. 6655, pp. H1-H-6, Oct. 2007. [25] K.-Y. Chen, J.-H. Lee, M.-K. Wei, Y.-T. Chang, Y.-H. Ho, J.-R. Lin and H.-Y. Lin, “Device-dependent angular luminance enhancement and optical responses of organic light-emitting devices with a microlens-array film,” Journal of the SID, vol. 19, pp. 21-28, Jan. 2011. [26] J.-H. Lee, Y.-H. Ho, K.-Y. Chen, H.-Y. Lin, J.-H. Fang, S.-C. Hsu, J.-R. Lin and M.-K. Wei, “Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays,” Optics Express, vol. 16, pp. 21184-21190, Dec. 2008. [27] M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” Journal of Optics A: Pure and Applied Optics, vol. 10, pp. 055302-1-055302-9, Mar. 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62886 | - |
| dc.description.abstract | 在本論文中,我們建立了一套演算法,針對微透鏡陣列結構將幾何光學的光
追跡與傳遞矩陣法整合在一起,可同時考慮加了微透鏡陣列的OLED 中的幾何光 學與波動光學特性,並且討論不同的微透鏡陣列結構對於光萃取效率與遠場光形 的影響。我們計算了光線在結構中經過0∼4 次反射的出光效率,發現若只考慮 第一次穿透的話,加入微透鏡陣列以後出光效率的提升相當有限。在結構中來回 反射的光線對於出光效率的提升扮演著重要的角色,特別是經過第一次反射的第 二次穿透光對於出光效率有重要的影響。我們針對三組實際的OLED 結構進行模 擬,找出最高光萃取效率的結構。在我們的模擬結果中光萃取效率有25%∼75% 的提升,遠場的正向光強最大約有25%∼40%的提升。我們發現如果基板中的場 形較集中在正向的話,使用透鏡高度比較低的透鏡可以得到較大的提升。如果基 板中的場形較分散的話,使用透鏡高度比較高的透鏡可以得到較大的提升。 | zh_TW |
| dc.description.abstract | In this thesis, we developed an algorithm which combines transfer matrix method
and ray-tracing for the modeling of planar light-emitting devices with microlens array. It can calculate geometrical optics and wave optics characteristics in the LED and OLED simultaneously. We also discussed the effect of microlens array in light extraction efficiency and far field pattern. We calculated the out-coupling efficiency with 0~4 times reflection in structure. The out-coupling enhancement by microlens arrays is very limited when only first transmission is considered. Multiple reflections play critical roles in the enhancement, especially the second out-coupling due to the first reflection. In our simulation, we calculated three groups of actual OLED structures, finding the best structure of microlens array for light extraction efficiency. In our result, light extraction efficiency have 25% to 75% enhancement and normal far field intensity have 25% to 40% enhancement. We found that if the field pattern in substrate is concentrated around normal direction, higher enhancement is obtained from structures with lower height ratio. If the field pattern is dispersed, higher enhancement is obtained from structures with higher height ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:13:42Z (GMT). No. of bitstreams: 1 ntu-102-R99941125-1.pdf: 3968414 bytes, checksum: fe232b8c93fd6f121bf5853fd42cd5da (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
誌謝................................................................................................................................. i 中文摘要 ....................................................................................................................... ii ABSTRACT ................................................................................................................. iii 目錄............................................................................................................................... iv 圖片目錄 ...................................................................................................................... vi 表格目錄 ....................................................................................................................... x 第一章 緒論 ................................................................................................................. 1 1.1 概要 ............................................................................................................... 1 1.2 研究動機 ....................................................................................................... 3 1.3 章節大綱 ....................................................................................................... 5 第二章 理論基礎 ......................................................................................................... 6 2.1 幾何光學 ....................................................................................................... 6 2.2 菲涅耳定律 ................................................................................................... 9 2.3 傳遞矩陣法 ................................................................................................. 15 第三章 光追跡演算法 ............................................................................................... 18 3.1 二維演算法 ................................................................................................. 20 3.2 三維演算法 ................................................................................................. 27 3.3 使用TracePro 驗證 ................................................................................... 31 3.3.1 TracePro ......................................................................................... 31 3.3.2 二維驗證結果 ................................................................................. 31 3.3.3 三維驗證結果 ................................................................................. 36 3.3.4 與實際光追跡不同之處 ................................................................. 39 第四章 模擬結果與討論 ........................................................................................... 41 4.1 一維微透鏡陣列 ......................................................................................... 41 4.1.1 結構參數對於穿透率之影響 ......................................................... 41 4.1.2 朗伯光源入射微透鏡陣列之穿透率 ............................................. 44 4.1.3 朗伯光源入射微透鏡陣列之遠場 ................................................. 50 4.1.4 微透鏡頂部形貌改變之結果 ......................................................... 53 4.2 二維微透鏡陣列(正方晶格) ..................................................................... 56 4.2.1 結構參數對於穿透率之影響 ......................................................... 56 4.2.2 朗伯光源入射正方晶格微透鏡陣列之穿透率 .............................. 65 4.2.3 朗伯光源入射正方晶格微透鏡陣列之遠場 ................................. 69 4.3 二維微透鏡陣列(三角晶格) ..................................................................... 72 4.3.1 結構參數對於穿透率之影響 ......................................................... 72 4.3.2 朗伯光源入射三角晶格微透鏡陣列之穿透率 .............................. 79 4.3.3 朗伯光源入射三角晶格微透鏡陣列之遠場 ................................. 83 v 4.4 OLED 模擬結果 ............................................................................................ 86 4.4.1 藍光OLED ........................................................................................ 87 4.4.2 綠光OLED ........................................................................................ 92 4.4.3 紅光OLED ........................................................................................ 97 第五章 結論 ............................................................................................................. 102 REFERENCE ........................................................................................................... 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 光追跡 | zh_TW |
| dc.subject | 傳遞矩陣法 | zh_TW |
| dc.subject | 光萃取效率 | zh_TW |
| dc.subject | 遠場光型 | zh_TW |
| dc.subject | far field pattern | en |
| dc.subject | ray-tracing | en |
| dc.subject | organic light emitting diode | en |
| dc.subject | transfer matrix method | en |
| dc.subject | light extraction efficiency | en |
| dc.title | 含有微透鏡陣列的有機發光元件之分析 | zh_TW |
| dc.title | Analysis of Organic Light‐Emitting Devices with Microlens Arrays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖,賴志賢,王子建 | |
| dc.subject.keyword | 有機發光二極體,光追跡,傳遞矩陣法,光萃取效率,遠場光型, | zh_TW |
| dc.subject.keyword | organic light emitting diode,ray-tracing,transfer matrix method,light extraction efficiency,far field pattern, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
