請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62863
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張顏暉 | |
dc.contributor.author | Wei-Jen Chen | en |
dc.contributor.author | 陳威仁 | zh_TW |
dc.date.accessioned | 2021-06-16T16:12:53Z | - |
dc.date.available | 2013-03-15 | |
dc.date.copyright | 2013-03-15 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-02-17 | |
dc.identifier.citation | 1-1. Z. W. Wang, J. Phys.: Condens. Matter. 16 , 829
(2004). 1-2. Y.Zhang, L.W.Wang, and A.Mascarehas, Nano Lett. 5, 1264 (2007). 1-3. J.Schrier, D.O.Demchencko, and L.W..Wang, Nano Lett. 7, 2377 (2007). 1-4. H. Kato, M. Sano, K. Miyamoto, and T. Yao, J. Cryst. Growth 237-239,538 (2002). 1-5. X.Pan, Z.Ye, J.Li, X.Gu, Y,Zeng, H.He, L.Z, Y. Che, Appl.Surf.Sci, 253, 5067 (2007). 1-6. K.Samanta, A. K. Arora, S. Hussain, S. Chakravarty, and R. S. Katiyar , Curr. Appl. Phys. 12, 1381 (2012). 1-7. J.Z.Zhao, H.W.Liang, J. C. Sun, J.M. Bian, Q.J.Feng, L.Z.Hu, H.Q.Zhang, X.P.Liang, Y.M.Luo, and G.T. Du, J. Phys. D: Appl. Phys ,41 ,195110 (2008). 2-1. M.H.Huang, Y.Wu, H.Feick, N.Tran, E.Weber and P.D.Yang, Adv.Mater. 13, 113 (2001). 2-2. M.H.Huang, S.Mao, H.Feick, H.Yun, Y.Wu, H.Kind, E.Weber, R.Russo, and P.D.Yang, Science, 292, 1897 (2001). 2-3. Z.W.Pan, Z.R.Dai, and Z.L.Wang, Science, 291, 1947 (2001). 2-4. J.Q.Hu, Q.Li, N.B.Wong, C.S.Lee, and S.T.Lee, Chem.Mater, 14, 1216 (2002). 2-5. J.C.Hulteen, C.R.Martin, J.Mater.Chem, 7, 1075 (1997). 2-6. Y.Li, G.W.Meng, L.D.Meng, L.D.Zhang, F.Phillipp, Appl. Phys. Lett, 76, 2011 (2000). 2-7. J. H. Zeng, Y. L. Yu, Y. F. Wang, Tian Jun Lou, Acta Materialia. 57, 1813 (2009). 2-8. L. Vayssieres, Adv. Mater. 2, 821 (2003). 2-9. M.H.Wong, A .Berenov, X. Qi, M.J. Kappers, Z.H.Barber, B.Illy, Z.Lockman, M. P.Ryan ,and J.L.MacManus- Driscoll,Nanotechnology. 14, 968 (2003). 2-10. S. L. Chuang, Physics of Optoelectronic Device. Wiley- Interscience Publication (1995). 2-11. D. Neamen, Semiconductor Physics and Device Basic Principle. McGraw-Hill (2003). 2-12. J. Singh, Physics of Semiconductors & Their Heterostructures. McGraw-Hill (2007). 3-1. J. H. Zeng, Y. L. Yu, Y. F. Wang, Tian Jun Lou, Acta Materialia. 57, 1813 (2009). 3-2. http://en.wikipedia.org/wiki/Scanning_electron_ microscope 3-3. J. C. Wu, Master thesis, National Taiwan University (2010). 3-4. J. K. Wu, Master thesis, National Taiwan University (2012). 4-1. K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, Adv. Mater. 20, 3248 (2008). 4-2. K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010). 4-3. V. Consonni, G. Rey, J. Bonaimé, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, Appl. Phys. Lett. 98, 111906 (2011). 4-4. X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Quan Li., ACS Nano .4, 3302 (2010). 4-5. J. Schrier, D. O. Demchenko, and L.-W. Wang, Nano Lett. 7, 2377 (2007). 4-6. T.-Y. Tsai, S.-J. Chang, T.-J. Hsueh, H.-T. Hsueh, W.- Y.Weng, C.-L. Hus and B.-T. Dai, Nanoscale Res. Lett. 6, 575 (2011). 4-7. K. Yu and J. Chen, Nanoscale Res. Lett. 4, 1 (2009). 4-8. J. H. Zeng, Y. L. Yu, Y. F. Wang, and T. J. Lou, Acta Materialia 57, 1813 (2009). 4-9. H. Y. Chao, J. H. Cheng, J. Y. Lu,Y. H. Chang, C. L. Cheng, and Y. F. Chen, Superlatt. Microstruct. 47, 160 (2010). 5-1. S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, and J. L. Li, Appl. Phys. Lett. 92, 152103 (2008). 5-2. L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, Appl. Phys. Lett. 88, 092103 (2006). 5-3. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Nat. Nanotechnol. 6, 506 (2011). 5-4 5-4. E. O. Kane, Phys. Rev. B 18, 6849 (1978). 5-5. C. Klingshrin, Phys. Status Solidi B. 244, 3027 (2007). 5-6. Y. Gai, J. Li, S. S. Li, J. B. Xia, Y. Yan, and S. H. Wei, Phys. Rev. B. 80, 15321 (2009). 5-7. T. Okada, K. Kawashima, and M. Ueda, Appl. Phys. A: Mater. Sci. Process. 81, 907 (2005). 5-8. X. Han, G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, and J. L. Hou, Appl. Phys. Lett. 86, 223106 (2005). 5-9. R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Wang, H. J. Fan, and M. Zacharias, H. Kalt, Phy. Status Solidi B. 243, 853 (2006). 5-10. C. Liu, A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, Adv. Mater. (Weinheim, Ger). 15,823 (2003). 5-11. X. Qiu, K. S. Wong, M. Wu, W. Lin, and H. Xu, Appl. Phys. Lett. 84, 2739 (2004). 5-12. K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West, and D. Coleman, Adv. Mater. (Weinheim,Ger). 14, 01221 (2002). 5-13. M. Zheng, L. Zhang, G. Li, and W. Shen, Chem. Phys. Lett. 363, 123 (2002). 5-14. Y. Leprince-Wang, A. Yacoubi-Ouslim, and G. Y. Wang, Microelectron. J. 36, 625 (2005). 5-15. L. Vayssieres, Adv. Mater. 15, 464 (2003). 5-16. C. H. Zang, J. F. Su, B. Wang, D. M. Zhang, and Y. S. Zhang, Journal of Luminescence. 131, 1817 (2011). 5-17. Y. Tang, J. Qi, Y. Zhang, Q. Liao, L. Tang, and Z. Qin, Appl. Phys. Lett. 92, 183117 (2006). 5-18. Y. Yang, W. Guo, J. Qi, J. Zhao, and Y. Zhang, Appl. Phys Lett. 92, 223113 (2010). 5-19. L. J. Wang and N. C. Giles, J. Appl. Phys. 94, 937 (2003). 5-20. K. Samanta, A. K. Arora, S. Hussain, S. Chakravarty, and R. S. Katiyar , Curr. Appl. Phys. 12, 1381 (2012). 5-21. X. H. Pan, W. Guo, Z. Z. Ye, B. Liu, and Y. Che, J. Appl. Phys. 105, 113516 (2009). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62863 | - |
dc.description.abstract | 氧化鋅奈米結構具有極優的光電性質與化學特性,使得近年來在氧化鋅奈米結構在透明電極、致動、感測、和光電應用上,吸引許多科學家的研究。而我也在氧化鋅奈米線的成長與光電性質上也有所研究。在此論文中,我們研究分為兩個部分,一是氧化鋅/碲化鋅核殼奈米線成長及光電性質分析、一是摻雜銻元素P型氧化鋅陣列的光學性質分析。
在氧化鋅/碲化鋅核殼奈米線部分,我們利用化學氣相沉積法及有機金屬汽相沉積法成長氧化鋅/碲化鋅核殼奈米線陣列,因氧化鋅奈米線陣列具有高的光吸收率及抗反射率,加上氧化鋅/碲化鋅異質結構為一個良好的P-N接面,因此,此結構可廣泛應用於太陽能電池,光偵測器及任何相關的光伏元件。 在另一方面,我們也利用電鍍法成長出摻銻元素P型氧化鋅陣列。我們也利用許多儀器去分析,發現用此方式可以成長出良好的晶體,而樣品也同時展現出良好的光學與電學性質,並在室溫光激螢光實驗下呈現紫色螢光,此現象可廣泛應用於短波長發光元件上。而相較於其他製程設備的昂貴價格,製程簡單的電鍍法也許在未來發展成為一個低成本、商業化製程的方法。 | zh_TW |
dc.description.abstract | Zinc Oxide (ZnO) nanostructures have recently attracted much attention in various research topics. Its direct wide band gap of 3.37eV and relatively large exciton binding energy are promising on the applications such as ultraviolet detection and emission, respectively. In addition, a high surface-to-volume ratio of ZnO structures has an excellent light trapping efficiency, so it can be utilized on the photovoltaic devices.
In this study, we report the growth and characterizations of ZnO/ZnTe core/shell nanowires array on the indium tin oxide. Properties of the ZnTe layer coated on well-aligned vertical ZnO nanowires has been demonstrated by scanning electron microscope, tunneling electron microscope, X-ray diffraction pattern, photoluminescence, and transmission studies. The ZnO/ZnTe core/shell nanowires array was then used as the active layer and carrier transport medium to fabricate a photovoltaic device. The enhanced photocurrent and faster response observed in ZnO/ZnTe, together with the quenching of the UV emission in the PL spectra, indicate that carrier separation in this structure plays an important role in determining their optical response. The results also indicate that core/shell structure can be integrated into useful photovoltaic devices. On the other hand, Sb-doped ZnO microrods array was fabricated on Al-doped ZnO thin film by electrodeposition. A strong violet luminescence, dominated by the free electron to acceptor level transitions, was revealed by temperature-dependent photoluminescence measurements. This acceptor-related transition was attributed to the formation of the SbZn-2VZn complex due to substitution of Sb dopants for Zn sites, instead of O sites, to form a complex with two Zn vacancies (VZn). This SbZn-2VZn complex has a lower formation energy and acts as a shallow acceptor which can induce a strong violet luminescence. The photo-responsivity of ZnO homojunction device at a negative bias demonstrated a nearly 40-fold current gain, illustrating that our device is potentially an excellent candidate for photodetector applications in the ultraviolet wavelength region. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:12:53Z (GMT). No. of bitstreams: 1 ntu-102-D97222015-1.pdf: 5265130 bytes, checksum: b4fe8d3ccc16b2e3fa0ed74fc4740c62 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | Chapter 1:Introduction
1-1 Zinc Oxide Nanostructure...........................1 1-2 TypeⅡCore-Shell Nanowires for Photovoltic Device..4 1-3 P-type ZnO.........................................7 References.............................................9 Chapter 2:Photodetector and Core-Shell Nanowires System 2-1 Synthesis of ZnO Nanostructure....................10 2-2 Photodetector Theory..............................16 2-3 One-Dimensional Core-Shell Nanowires System.......24 References............................................26 Chapter 3:Experiment Techniques 3-1 Chemical Vapor Deposition (CVD)...................28 3-2 Metal-Organic Chemical Vapor Deposition (MOCVD)...29 3-3 Scanning Electron Microscopy (SEM)................33 3-4 Photoluminescence (PL)............................35 3-5 X-ray diffraction (XRD)...........................36 3-6 Transmission electron microscopy (TEM)............37 3-7 UV/VIS/NIR spectrophotometer......................38 3-8 Sputtering........................................38 References............................................40 Chapter 4:ZnO/ZnTe Core-Shell Nanowires Photovoltaic Device 4-1 Motivation........................................41 4-2 Experiment........................................44 4-3 Result and Discussion.............................46 4-4 Summary...........................................54 References............................................55 Chapter 5:Room-Temperature Violet Luminescence and Ultraviolet Photodetection from Sb-Doped ZnO Microrods Array 5-1 Motivation........................................56 5-2 Experiment........................................59 5-3 Result and Discussion.............................61 5-4 Summary...........................................72 References............................................74 Chapter 6:Conclusion.................................76 | |
dc.language.iso | en | |
dc.title | 氧化鋅/碲化鋅核殼奈米線及摻雜銻元素P型氧化鋅陣列光學與電學性質之研究 | zh_TW |
dc.title | A Study about Optical and Electrical Properties of ZnO / ZnTe Core-Shell Nanowires and Antimony Doped P-type ZnO Arrays | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 梁啟德 | |
dc.contributor.oralexamcommittee | 傅昭銘,林立弘,杭大任,林晃德 | |
dc.subject.keyword | 氧化鋅,碲化鋅,核殼奈米線,水熱電鍍法,P型氧化鋅,紫色螢光,光偵測器, | zh_TW |
dc.subject.keyword | ZnO,ZnTe,Core Shell Nanowires,Hydrothermal and Electro-deposition Method,P-type ZnO,Violet Luminescence,Photodetector, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-02-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。