請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邢禹依,林彥蓉 | |
| dc.contributor.author | Yu-Ming Hsu | en |
| dc.contributor.author | 許育鳴 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:12:18Z | - |
| dc.date.available | 2015-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-18 | |
| dc.identifier.citation | 陳儀芳。2008。以蠟質基因探討TRIM突變水稻族群的變異。國立台灣大學農藝
學研究所碩士論文。 Abe, A., S. Kosugi, K. Yoshida, S. Natsume, H. Takagi, H. Kanzaki, H. Matsumura, C. Mitsuoka, M. Tamiru, H. Innan, L. Cano, S. Kamoun, and R. Terauchi. (2012) Genome sequencing reveals agronomically important loci in rice using mutmap. Nat Biotechnol 30: 174-178. Aluko, G., C. Martinez, J. Tohme, C. Castano, C. Bergman, and J. H. Oard. (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O. glaberrima. Theor Appl Genet 109: 630-639. Austin, R. S., D. Vidaurre, G. Stamatiou, R. Breit, N. J. Provart, D. Bonetta, J. F. Zhang, P. Fung, Y. C. Gong, P. W. Wang, P. McCourt, and D. S. Guttman. (2011) Next-generation mapping of arabidopsis genes. Plant J 67: 715-725. Brettell, R. S., and E. Dennis. (1991) Reactivation of a silent ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229: 365-372. Brettell, R. S., E. Dennis, W. Scowcroft, and W. J. Peacock. (1986) Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol Gen Genet 202: 235-239. Buckler, E. S., T. L. Phelps-Durr, C. S. K. Buckler, R. K. Dawe, J. F. Doebley, and T. P. Holtsford. (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415-426. Chauhan, J. (1998) Inheritance of grain weight, size and shape in rainfed rice (Oryza sativa). Indian J Agric Sci 68: 9-12. Chin H. G., M. S. Choe, S. H. Lee, S. H. Park, J. C. Koo, N. Y. Kim, J. J. Lee, B. G. Oh, G. H. Yi, S. C. Kim, H. C. Choi, M. J. Cho, and C. D. Han. (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19: 615-623 Chen, J., J. Ding, Y. Ouyang, H. Du, J. Yang, K. Cheng, J. Zhao, S. Qiu, X. Zhang, J. Yao, K. Liu, L. Wang, C. Xu, X. Li, Y. Xue, M. Xia, Q. Ji, J. Lu, M. Xu, and Q. Zhang. (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. P Natl A Sci USA USA 105: 11436-11441. Chern, C. G., M. J. Fan, S. M. Yu, A. L. Hour, P. C. Lu, Y. C. Lin, F. J. Wei, S. C. Huang, S. Chen, M. H. Lai, C. S. Tseng, H. M. Yen, W. S. Jwo, C. C. Wu, T. L. Yang, L. S. Li, Y. C. Kuo, S. M. Li, C. P. Li, C. K. Wey, A. Trisiriroj, H. F. Lee, and Y. I. C. Hsing. (2007) A rice phenomics study-phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol Biol 65: 427-438. Chu, Y., H. Morishima, and H. Oka. (1969) Reproductive barriers distributed in cultivated rice species and their wild relatives. Jpn J Genet 44: 207-223. Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Y. Lu, and D. M. Ruden. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff: Snps in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6: 80-92. Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and G. P. A. Group. (2011) The variant call format and vcftools. Bioinformatics 27: 2156-2158. Davey, J. W., P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen, and M. L. Blaxter. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12: 499-510. Dennis, E. S., R. I. S. Brettell, and W. J. Peacock. (1987) A tissue culture induced Adh1 null mutant of maize results from a single base change. Mol Gen Genet 210: 181-183. Fan, C., S. Yu, C. Wang, and Y. Xing. (2009) A causal c–a mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118: 465-472. Gale, M.D. and K.M. Devos. (1998) Comparative genetics in the grasses. Proc Natl Acad Sci 95: 1971-1974 Greco, R., P. B. F. Ouwerkerk, R. J. Kam, C. Sallaud, C. Favalli, L. Colombo, E. Guiderdoni, A. H. Meijer, J. H. C. Hoge†, and A. Pereira. (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108: 10-24. Greco, R., P. B. F. Ouwerkerk, A. J. C. Taal, C. Sallaud, E. Guiderdoni, A. H. Meijer, J. H. C. Hoge, and A. Pereira. (2004) Transcription and somatic transposition of the maize En / Spm transposon system in rice. Mol Genet Genomics 270: 514-523 Godfray, H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin. (2010) Food security: The challenge of feeding 9 billion people. Science 327: 812-818. Gong, P., G. Wu, and D. Ort. (2006) Slow dark deactivation of arabidopsis chloroplast ATP synthase caused by a mutation in a nonplastidic SAC domain protein. Photosynth Res 88: 133-142. Gong, Z. Y., H. X. Yu, J. Huang, C. D. Yi, and M. H. Gu. (2009) Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Chromosome Res 17: 863-872. Hall, M. C., and J. H. Willis. (2005) Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: Implications for genomic divergence. Genetics 170: 375-386. Hang, A., and P. Bregitzer. (1993) Chromosomal variations in immature embryo-derived calli from six barley cultivars. J Hered 84: 105-108. Harushima, Y., N. Kurata, M. Yano, Y. Nagamura, T. Sasaki, Y. Minobe, and M. Nakagahra. (1996) Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92: 145-150. Harushima, Y., M. Nakagahra, M. Yano, T. Sasaki, and N. Kurata. (2002) Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160: 313-322. Heuer, S., and K. Miezan. (2003) Assessing hybrid sterility in Oryza glaberrima × O. Sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. Theor Appl Genet 107: 902-909. Hirochika, H. (1997) Retrotransposons of rice: Their regulation and use for genome analysis. Plant Mol Biol 35: 231-240. Hirochika, H. (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 35: 118-122 Hsing, Y.-I., C.-G. Chern, M.-J. Fan, P.-C. Lu, K.-T. Chen, S.-F. Lo, P.-K. Sun, S.-L. Ho, K.-W. Lee, Y.-C. Wang, W.-L. Huang, S.-S. Ko, S. Chen, J.-L. Chen, C.-I. Chung, Y.-C. Lin, A.-L. Hour, Y.-W. Wang, Y.-C. Chang, M.-W. Tsai, Y.-S. Lin, Y.-C. Chen, H.-M. Yen, C.-P. Li, C.-K. Wey, C.-S. Tseng, M.-H. Lai, S.-C. Huang, L.-J. Chen, and S.-M. Yu. (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63: 351-364. Huang, X., Q. Feng, Q. Qian, Q. Zhao, L. Wang, A. Wang, J. Guan, D. Fan, Q. Weng, T. Huang, G. Dong, T. Sang, and B. Han. (2009) High-throughput genotyping by whole-genome resequencing. Genome Res19: 1068-1076. Jiang, C., A. Mithani, X. Gan, E. J. Belfield, John P. Klingler, J.-K. Zhu, J. Ragoussis, R. Mott, and Nicholas P. Harberd. (2011) Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 21: 1385-1390. Jiang, Y., Z. Cai, W. Xie, T. Long, H. Yu, and Q. Zhang. (2012) Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnol Adv 30: 1059-1070. Jeon, J.-S., S. Lee, K.-H. Jung, S.-H. Jun, D.-H. Jeong, J. Lee, C. Kim, S. Jang, S. Lee, K. Yang, J. Nam, K. An, M.-J. Han, R.-J. Sung, H.-S. Choi, J.-H. Yu, J.-H. Choi, S.-Y. Cho, S.-S. Cha, S.-I. Kim, and G. An. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561-570. Jeong, D.-H., S. An, H.-G. Kang, S. Moon, J.-J. Han, S. Park, H. S. Lee, K. An, and G. An. (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130: 1636-1644. Johnson, S. S., R. L. Phillips, and H. W. Rines. (1987) Possible role of heterochromatin in chromosome breakage induced by tissue culture in oats (Avena sativa L.). Genome 29: 439-446. Kaeppler, S., H. Kaeppler, and Y. Rhee. (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43: 179-188. Kato, S., H. Kosaka, and S. Hara. (1928) On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ 3: 132-147. Kolesnik, T., I. Szeverenyi, D. Bachmann, C. S. Kumar, S. Jiang, R. Ramamoorthy, M. Cai, Z. G. Ma, V. Sundaresan, and S. Ramachandran. (2004) Establishing an efficient Ac/Ds tagging system in rice: Large-scale analysis of Ds flanking sequences. Plant J 37: 301-314. Krishnan, A., E. Guiderdoni, G. An, Y. I. C. Hsing, C. D. Han, M. C. Lee, S. M. Yu, N. Upadhyaya, S. Ramachandran, Q. F. Zhang, V. Sundaresan, H. Hirochika, H. Leung, and A. Pereira. (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149: 165-170. Kumar, C. S., R. A. Wing, and V. Sundaresan. (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44: 879-892. Larkin, P. J., and W. R. Scowcroft. (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197-214. Lee, S., J.-H. Kim, E. Yoo, C.-H. Lee, H. Hirochika, and G. An. (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57: 805-818. Li, H., and R. Durbin. (2009) Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25: 1754-1760. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and G. P. D. P. Subgroup. (2009) The sequence alignment/map format and samtools. Bioinformatics 25: 2078-2079. Li, J., M. Thomson, and S. R. McCouch. (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168: 2187-2195. Li, W., Z. Lin, and X. Zhang. (2007) A novel segregation distortion in intraspecific population of asian cotton (Gossypium arboretum L.) detected by molecular markers. J Genet Genomics 34: 634-640. Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao, and Y. He. (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43: 1266-1269. Lin, S. Y., H. Ikehashi, S. Yanagihara, and A. Kawashima. (1992) Segregation distortion via male gametes in hybrids between indica and japonica or wide-compatibility varieties of rice (Oryza sativa L). Theor Appl Genet 84: 812-818. Long, Y., L. Zhao, B. Niu, J. Su, H. Wu, Y. Chen, Q. Zhang, J. Guo, C. Zhuang, M. Mei, J. Xia, L. Wang, H. Wu, and Y.-G. Liu. (2008) Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. P Natl A Sci USA 105: 18871-18876. Lu, H., J. Romero-Severson, and R. Bernardo. (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105: 622-628. Lyon, M. F. (2003) Transmission ratio distortion in mice. Annu Rev Genet 37: 393-408. Lyttle, T. W. (1991) Segregation distorters. Annu Rev Genet 25: 511-581. Lyttle, T. W. (1993) Cheaters sometimes prosper: Distortion of mendelian segregation by meiotic drive. Trends Genet 9: 205-210. Magwene, P. M., J. H. Willis, and J. K. Kelly. (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7: e1002255. Mao, H. L., S. Y. Sun, J. L. Yao, C. R. Wang, S. B. Yu, C. G. Xu, X. H. Li, and Q. F. Zhang. (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. P Natl A Sci USA 107: 19579-19584. Matsubara, K., K. Ebana, T. Mizubayashi, S. Itoh, T. Ando, Y. Nonoue, N. Ono, T. Shibaya, E. Ogiso, K. Hori, S. Fukuoka, and M. Yano. (2011) Relationship between transmission ratio distortion and genetic divergence in intraspecific rice crosses. Mol Genet Genomics 286: 307-319. Michelmore, R. W., I. Paran, and R. V. Kesseli. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. P Natl A Sci USA 88: 9828-9832. Miyao, A., M. Nakagome, T. Ohnuma, H. Yamagata, H. Kanamori, Y. Katayose, A. Takahashi, T. Matsumoto, and H. Hirochika. (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53: 256-264. Miyao, A., K. Tanaka, K. Murata, H. Sawaki, S. Takeda, K. Abe, Y. Shinozuka, K. Onosato, and H. Hirochika. (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771-1780. Monna, L., N. Kitazawa, R. Yoshino, J. Suzuki, H. Masuda, Y. Maehara, M. Tanji, M. Sato, S. Nasu, and Y. Minobe. (2002) Positional cloning of rice semidwarfing gene, sd-1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9: 11-17. Morinaga, T. (1968) Origin and geographical distribution of japanese rice. Jpn Agric Res Quart 3: 1-5. Peschke, V. M., and R. L. Phillips. (1991) Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81: 90-97. Peschke, V. M., R. L. Phillips, and B. G. Gengenbach. (1987) Discovery of transposable element activity among progeny of tissue culture--derived maize plants. Science 238: 804-807. Peschke, V. M., R. L. Phillips, and B. G. Gengenbach. (1991) Genetic and molecular analysis of tissue-culture-derived ac elements. Theor Appl Genet 82: 121-129. Phillips, R. L., S. M. Kaeppler, and P. Olhoft. (1994) Genetic instability of plant tissue cultures: Breakdown of normal controls. P Natl A Sci USA 91: 5222-5226. Presgraves, D. C. (2007) Does genetic conflict drive rapid molecular evolution of nuclear transport genes in Drosophila? BioEssays 29: 386-391. Quillet, M. C., N. Madjidian, Y. Griveau, H. Serieys, M. Tersac, M. Lorieux, and A. Berville. (1995) Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus. Theor Appl Genet 91: 1195-1202. R Core Team (2012) R : A Language and Environment for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.r-project.org. Raju, N. B., R. L. Metzenberg, and P. K. T. Shiu. (2007) Neurospora spore killers Sk-2 and Sk-3 suppress meiotic silencing by unpaired DNA. Genetics 176: 43-52. Redona, E. D., and D. J. Mackill. (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96: 957-963. Rhoades, M. M. (1942) Preferential segregation in maize. Genetics 27: 395-407. Robinson, J. T., H. Thorvaldsdottir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and J. P. Mesirov. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24-26. Sabot, F., N. Picault, M. El-Baidouri, C. Llauro, C. Chaparro, B. Piegu, A. Roulin, E. Guiderdoni, M. Delabastide, R. McCombie, and O. Panaud. (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. The Plant J 66: 241-246. Saint-Jore-Dupas, C., A. Nebenfuhr, A. Boulaflous, M.-L. Follet-Gueye, C. Plasson, C. Hawes, A. Driouich, L. Faye, and V. Gomord. (2006) Plant n-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18: 3182-3200. Sallaud, C., D. Meynard, J. Boxtel, C. Gay, M. Bes, J. P. Brizard, P. Larmande, D. Ortega, M. Raynal, M. Portefaix, P. B. F. Ouwerkerk, S. Rueb, M. Delseny, and E. Guiderdoni. (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106: 1396-1408. Schneeberger, K., S. Ossowski, C. Lanz, T. Juul, A. H. Petersen, K. L. Nielsen, J. E. Jorgensen, D. Weigel, and S. U. Andersen. (2009) SHOREmap: Simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6: 550-551. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9: 671-675. Schneider, K., B. Wells, L. Dolan, and K. Roberts. (1997) Structural and genetic analysis of epidermal cell differentiation in Arabidopsis primary roots. Development 124: 1789-1798. Sequencing ProjectInternational Rice Genome (2005) The map-based sequence of the rice genome. Nature 436: 793-800. Skirvin, R. M., K. D. McPheeters, and M. Norton. (1994) Sources and frequency of somaclonal variation. HortScience 29: 1232-1237. Torjek, O., H. Witucka-Wall, R. Meyer, M. Korff, B. Kusterer, C. Rautengarten, and T. Altmann. (2006) Segregation distortion in arabidopsis c24/col-0 and col-0/c24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet 113: 1551-1561. Takano-Kai, N., H. Jiang, T. Kubo, M. Sweeney, T. Matsumoto, H. Kanamori, B. Padhukasahasram, C. Bustamante, A. Yoshimura, K. Doi, and S. McCouch. (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182: 1323-1334. Takeda, T., Y. Suwa, M. Suzuki, H. Kitano, M. Ueguchi-Tanaka, M. Ashikari, M. Matsuoka, and C. Ueguchi. (2003) The OsTB1 gene negatively regulates lateral branching in rice. The Plant J 33: 513-520. Tan, Y. F., Y. Z. Xing, J. X. Li, S. B. Yu, C. G. Xu, and Q. Zhang. (2000) Genetic bases of appearance quality of rice grains in shanyou 63, an elite rice hybrid. Theor Appl Genet 101: 823-829. Temin, R. G., B. Ganetzky, P. A. Powers, T. W. Lyttle, S. Pimpinelli, P. Dimitri, C.-I. Wu, and Y. Hiraizumi. (1991) Segregation distortion in Drosophila melanogaster: Genetic and molecular analyses. The American Naturalist 137: 287-331. Terao, H., and U. Mizushima. (1939) Some considerations on the classification of O. Sativa L. Jpn J Bot 10: 213-258. Thomson, M. J., T. H. Tai, A. M. McClung, X. H. Lai, M. E. Hinga, K. B. Lobos, Y. Xu, C. P. Martinez, and S. R. McCouch. (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar jefferson. Theor Appl Genet 107: 479-493. Turner, B. C., and D. D. Perkins. (1979) Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics 93: 587-606. Upadhyaya, N. M., X.-R. Zhou, Q.-H. Zhu, K. Ramm, L. Wu, A. Eamens, R. Sivakumar, T. Kato, D.-W. Yun, C. Santhoshkumar, K. K. Narayanan, J. W. Peacock, and E. S. Dennis. (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol 29: 547-559. Wan, S., J. Wu, Z. Zhang, X. Sun, Y. Lv, C. Gao, Y. Ning, J. Ma, Y. Guo, Q. Zhang, X. Zheng, C. Zhang, Z. Ma, and T. Lu. (2009) Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol Biol 69: 69-80. Wang, L., A. Wang, X. Huang, Q. Zhao, G. Dong, Q. Qian, T. Sang, and B. Han. (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122: 327-340. Wang, Q.-M., and L. Wang. (2012) An evolutionary view of plant tissue culture: Somaclonal variation and selection. Plant Cell Rep 31: 1535-1547. Williams, M. E., J. Torabinejad, E. Cohick, K. Parker, E. J. Drake, J. E. Thompson, M. Hortter, and D. B. DeWald. (2005) Mutations in the arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of ptdins(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol 138: 686-700. Xie, W. B., Q. Feng, H. H. Yu, X. H. Huang, Q. A. Zhao, Y. Z. Xing, S. B. Yu, B. Han, and Q. F. Zhang. (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. P Natl A Sci USA 107: 10578-10583. Xing, Y. Z., Y. F. Tan, J. P. Hua, X. L. Sun, C. G. Xu, and Q. Zhang. (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105: 248-257. Xing, Y. Z., and Q. F. Zhang. (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61: 421-442. Xu, Y., S. R. McCouch, L. Zhu, J. Xiao, and N. Huang. (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253: 535-545. Xu, Y. B., Y. L. Lu, C. X. Xie, S. B. Gao, J. M. Wan, and B. M. Prasanna. (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breeding 29: 833-854. Yamagishi, M., Y. Takeuchi, I. Tanaka, I. Kono, K. Murai, and M. Yano. (2010) Segregation distortion in F2 and doubled haploid populations of temperate japonica rice. J Genet 89: 237-241. Yu, H., W. Xie, J. Wang, Y. Xing, C. Xu, X. Li, J. Xiao, and Q. Zhang. (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE 6: e17595 Zamir, D., and Y. Tadmor. (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147: 355-358. Zhu, Y. Y., T. Nomura, Y. H. Xu, Y. Y. Zhang, Y. Peng, B. Z. Mao, A. Hanada, H. C. Zhou, R. X. Wang, P. J. Li, X. D. Zhu, L. N. Mander, Y. Kamiya, S. Yamaguchi, and Z. H. He. (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18: 442-456. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62847 | - |
| dc.description.abstract | 隨著氣候變遷及世界人口成長快速,糧食供應逐漸成為重要議題,水稻為世界重要的糧食作物,因此,水稻產量提升為現今育種之重要目標。穀粒外型為產量構成要素之一,本研究從Taiwan Rice InsertionalMutants (TRIM) 族群中挑出一株具高株、長穀粒之T-DNA插入突變品系TALL,針對穀粒外型進行研究。前人分析結果顯示長穀粒性狀與T-DNA插入不具相關性,因此本研究利用TALL與台稉9號建立1000株F2族群,並以次世代定序 (next-generation sequencing) 為基礎之分群分析法 (bulked segregant analysis) 定位穀粒長基因。針對定位族群進行外表型鑑定後,本研究以五組F2樣本進行次世代定序及後續資料分析,分別為混合20株、40株及兩個單株長穀粒F2個體及混合20株短穀粒F2個體。結果顯示四筆長穀粒F2樣本於第三條染色體近中節處存在一段非重組區域,其遺傳背景大多由TALL所組成;然而,混合20株短榖粒樣本於此處能正常分離。隨後比較混合20株、40株及兩者合併之混合60株長穀粒F2樣本,可將候選區間縮小至15-17.5 Mb。針對假定SNP頻率為1之位點於此區間進行基因註解後,顯示共有172個錯義突變 (missense mutation) 及108個沉默突變 (silent mutation)。第17365441個由C變成A的突變位點,導致此區間內唯一一個基因提早出現終止密碼子 (early stop codon),此基因為已發表之穀粒長基因座GS3,由於此突變位點基因型及位置皆與前人研究相同,因此我們推測GS3極有可能為目標基因。相較於傳統雙親定位法,本研究使用少量F2個體並以次世代定序輔助,便能快速定位目標基因,故此新型分析法可應用於定位其他重要農藝性狀基因座。此外本研究亦發現台農67號與TALL於第三條染色體之候選區間內存在超過5200個同結合SNP,此種變異可能來自體細胞變異 (somaclonal variation),但其原因仍有待日後進行更深入研究。 | zh_TW |
| dc.description.abstract | With rapid population growth and climate changes, sufficient food production is a major challenge. Rice is one of major crops in the world, and the major goal is to increase grain yield. Rice grain length is an important component of grain yield, so we examined the T-DNA mutant line TALL,with agronomically important long grain length and tall height. The mutant line does not have the recessive phenotype cosegregated with its T-DNA insertion, so we used bulked segregant analysis (BSA) with next-generation sequencing (NGS) to isolate the gene controlling the important traits. We crossed Tall163 and an elite rice cultivar, TK9, showing normal grain length, and generated an F2 population of 1000 individuals. After phenotyping, we divided 62 long-grain and 20 normal-grain plants into 5 samples:2 bulked samples of 20 and 40 long-grain plants and 1 of 20 normal-grain plants, and 2 samples of 1 long-grain plant each. The 4 long-grain samples had a non-recombinant region close to the centromere region of chromosome 3 and showed the same genotype as TALL. By combining the2 mutant bulked samples into a sample of 60 long-grain plants and comparing with the 2 mutant bulked samplesof 20 and 40 mutant plants, the location of the candidate gene could be narrowed down to a 2.5-Mb region. Annotating each position in the candidate region with putative SNP frequency of 1 revealed 172 missense mutations and 108 silent mutations.Futhermore, the only mutationwith an early stop codon was caused by a C-A mutation in position 17365441, which is the published gene, GS3. The mutant genotype and position were verified with previous studies, so GS3may be the candidate gene. With few F2 plants and a short time, we identified the candidate gene by NGS-based BSA, which may be useful in identifying other agronomical traits.TALLshows more than 5200 homozygous SNPs in the candidate region of chromosome 3, possibly caused by somaclonal variations, as compared with its parent line TNG67, but further studies are needed to identify the mechanism of the somaclonal variations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:12:18Z (GMT). No. of bitstreams: 1 ntu-102-R99621118-1.pdf: 5729891 bytes, checksum: 5d7b2b347cf513f2492779fa766915a4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 附表目錄 ix 第一章、前言 1 第二章、前人研究 3 一、TRIM T-DNA 突變水稻族群 3 二、體細胞變異 5 三、分離偏差 8 四、以次世代定序進行基因定位 10 五、水稻榖粒外形相關基因 14 第三章、材料與方法 18 一、試驗材料 18 二、農藝性狀調查 19 三、以聚合酶連鎖反應為基礎之基因型分析 21 四、以次世代定序進行分群分析法及體細胞變異探勘 22 五、GS3基因表現及序列分析 28 第四章、結果 31 一、外表型調查 31 二、以聚合酶連鎖反應為基礎之F2基因型分析 33 三、以次世代定序定位水稻榖粒長基因座 33 四、GS3基因表現及序列分析 36 第五章、討論 37 一、外表型鑑定 37 二、雜交親本選定 38 三、以次世代定序定位水稻榖粒長基因座 39 四、GS3基因定位 42 五、GS3基因表現及序列分析 43 六、TALL之變異探討 44 七、結合次世代定序之分群分析法用於植物研究 45 第六章、結論 47 第七章、參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | GS3 | zh_TW |
| dc.subject | 體細胞變異 | zh_TW |
| dc.subject | 假定SNP頻率 | zh_TW |
| dc.subject | 分群分析法 | zh_TW |
| dc.subject | 穀粒長 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | next-generation sequencing | en |
| dc.subject | bulked segregant analysis | en |
| dc.subject | somaclonal variation | en |
| dc.subject | putative SNP frequency | en |
| dc.subject | GS3 | en |
| dc.subject | grain length | en |
| dc.subject | rice | en |
| dc.title | 以次世代定序定位一個水稻粒長基因 | zh_TW |
| dc.title | NGS-based Mapping of a Gene for Rice Grain length | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴明信,董致韡 | |
| dc.subject.keyword | 水稻,穀粒長,次世代定序,分群分析法,體細胞變異,假定SNP頻率,GS3, | zh_TW |
| dc.subject.keyword | rice,grain length,next-generation sequencing,bulked segregant analysis,somaclonal variation,putative SNP frequency,GS3, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
