請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62841完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳凱儀(Kai-Yi Chen) | |
| dc.contributor.author | Ya-Ling Hou | en |
| dc.contributor.author | 侯雅玲 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:12:06Z | - |
| dc.date.available | 2018-04-26 | |
| dc.date.copyright | 2013-04-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-18 | |
| dc.identifier.citation | 康家豪 (2007) 以DNA微陣列分析slpslp突變水稻之幼花序基因表現。台灣大學農藝系碩士論文.
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF,Schmidt RJ (2000) Molecular and genetic analysis of the Silky1 gene reveals conservation in floral organ specification between eudicots and monocots. Mol Cell, 5:569-579. Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M. (1990) The LIGULELESS-1 gene acts tissue specifically in maize leaf development. Dev. Biol. 141: 220-232. Bell, A.D., Bryan, A., 2008. Plant Form: An Illustrated Guide to Flowering. Plant Morphology. Timber Press, Portland, OR. Birkenbihl, R.P., Jach, G., Saedler, H., Huijser, P., (2005) Functional dissection of the plant-specific SBP-domain, overlap of the DNA-binding and nuclear localization domains. J. Mol. Biol. 352:585-596. Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46:69-78. Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101: 11511-11516. Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P. (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene. 237:91-104. Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P. (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J.12:367-377. Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L. (2010) SQUAMOSA Promoter-Binding Protein-Like Transcription Factors: Star Players for Plant Growth and Development. J Integr Plant Biol. 52:946-51. Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH. (2006) Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta.223:882-90. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol. 14:1935-40. Doebley J, STEC A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87: 9888-9892. Duan YL, Diao ZJ, Liu HQ, Cai MS, Wang F, Lan T, Wu WR (2010) Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.). Plant Mol. Biol. 74:605-615. Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res. 13:29-33 Horigome A, Nagasawa N, Ikeda K, Ito M, Itoh J, Nagato Y. (2009) Rice open beak is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene. Plant J. 58:724-36. Huijser P, Klein J, Lonnig WE, Meijer H, Saedler H, Sommer H.(1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11(4):1239-49. Ikeda K, Sunohara H, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breeding Sci 54: 147-156 Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho G, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development.Plant Cell 12:871–889. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant Architecture in rice. Nat. Genet. 42: 541-544. Jin Y, Luo Q, Tong H, Wang A, Cheng Z, Tang J, Li D, Zhao X, Li X, Wan J, Jiao Y, Chu C, Zhu L.(2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol. 359:277-88. Kang, H.G., Jeon, J.S., Lee, S., An, G.(1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38:1021-1029. Kellogg EA. (2001) Evolutionary history of the grasses. Plant Physiol. 125:1198-205. Klein J, Saedler H, Huijser P. (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet. 250(1):7-16. Krizek BA, Fletcher JC. (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6: 688-98. Kyozuka J, Kobayashi T, Morita M, Shimamoto K. (2000) Spatially and temporally regulated expression of rice MADS box geneswith similarity to Arabidopsis Class A, B and C genes. Plant Cell Physiol 41:710-718. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X.(2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol. 66:491-502. Li X, Sun L, Tan L, Liu F, Zhu Z, Fu Y, Sun X, Sun X, Xie D, Sun C. (2012) TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol. 78: 351-9. Luo Q, Zhou K, Zhao X, Zeng Q, Xia H, Zhai W, Xu J, Wu X, Yang H, Zhu L. (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta. 221:222-30. Ma H, Yanofsky MF, Meyerowitz EM. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5:484-95. Ma X, Cheng Z , Wu F , Jin M, Zhang L, Zhou F, Wang J, Zhou K, Ma J, Lin Q, Lei C, Wan J. (2012) Beak like spikelet1 is required for lateral development of lemma and palea in rice. Plant Mol Biol Rep.31:98-108. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38: 948-952. Maria A. Moreno, Lisa C. Harper, Roger W. Krueger, Stephen L. Dellaporta, and Michael Freeling. (1997) Ligulelessl encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. GENES& DEVELOPMENT. 11: 616-628. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 42:545-9. Muller, H. J. 1932. Further studies on the nature and causes of gene mutations. Proceedings of the 6th International Congress of Genetics, 213-255. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development. 130(4):705-18. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H.(2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell. 21:3008-25. Prasad, K., Parameswaran, S., Vijayraghavan, U., 2005. OsMADS1, a rice MADSbox factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J. 43:915-928. Sheu J.J., Yu T.S., Yu S.M. (1996) Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulates through complicated transcriptional and posttranscriptional processes. J. Biol. Chem. 271: 26998-27004. Shinozuka Y, Kojima S, Shomura A, Ichimura H, Yano M,Yamamoto K, Sasaki T (1999) Isolation and characterization of rice MADS box gene homologues and their RFLP mapping. DNA Res. 6:123-129 Soraya Pelaz, Gary S. Ditta, Elvira Baumann, Ellen Wisman & Martin F. Yanofsky. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203 Stone J, Liang X, Nekl E, Stiers J (2005) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J. 41:744-754. Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Hirano HY.(2012) The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell. 24: 80-95. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol.42: 115-149. Usami T, Horiguchi G, Yano S, Tsukaya H (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136:955-964. Veitia RA (2007) Exploring the molecular etiology of dominant-negative mutations. Plant Cell 19 3843-3851 Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Q, Faller M, Bomblies-Yant K, Lukens L, Doebley J (2005) The origin of the naked grains of maize. Nature 436: 714-719 Wang JW, Czech B, Weigel D. (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138: 738-49. Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genet 6:e1000818. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.(2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet. 44:950-4. Wang SS, Wang CS, Tseng TH, Hou YL, Chen KY. (2011) High-resolution genetic mapping and candidate gene identification of the SLP1 locus that controls glume development in rice. Theor Appl Genet. 122:1489-96. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539-3547. Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, Xie R, Luo H, Zhao X, Meng Z, He G, Zhu L. (2009) STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J. 59:789-801. Xie K, Wu C, Xiong L. (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142:280-93. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J. Mol. Biol. 337:49-63 Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA,Qian Q, Zhang DB. (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149:235-244. Zhang Q, Xu J, Li Y, Xu P, Zhang H, Wu X. (2007) Morphological, anatomical and genetic analysis for a rice mutant with abnormal hull. J Genet Genomics. 34:519-26. Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol. Biol. 63: 429-439. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62841 | - |
| dc.description.abstract | Stunted lemma/palea (slp) 為一水稻突變品系,其外表型呈現矮株、內外穎退化與不稔。前人研究的結果顯示slp突變外表型可能是由於OsSPL16蛋白序列中第六個胺基酸發生錯義突變而造成。本研究顯示過量表現正常OsSPL16對偶基因於slp突變植株中並無法使slp突變外表型回復正常,然而將突變OsSPL16對偶基因導入正常水稻植株中會造成轉殖植株呈現slp突變外表型。此結果證實OsSPL16的錯義突變對偶基因確實為slp突變對偶基因,而此突變對偶基因也具有活性,能影響水稻株高及花穗發育。 | zh_TW |
| dc.description.abstract | The rice stunted lemma/palea (slp) mutant displays dwarf, shorten panicle length, seriously degenerated lemma/palea, and sterility. Previous study suggested that a missense mutation at the sixth amino acid of the OsSPL16 protein was likely responsible for the slp mutant phenotypes. The current study showed that overexpression of the wild-type OsSPL16 allele in the slp/slp and Slp/slp mutants was unable to convert the slp mutant phenotype to normal. However, introduction of the mutant OsSPL16 allele into a normal rice cultivar resulted in the slp mutant phenotypes displayed in the transgenic plants. These results concluded the missense mutation of OsSPL16 is the slp mutant allele and a neomorph allele which affects plant height and development of inflorescence and spikelet. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:12:06Z (GMT). No. of bitstreams: 1 ntu-102-R98621111-1.pdf: 3510283 bytes, checksum: c7fa21aadb66a7d667b2841f19b1b823 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vi 表目錄 vi Introduction 1 Materials and methods 4 Genomic DNA extraction 4 Genotying 4 RNA extraction 4 cDNA synthesis 5 RT-PCR analysis 6 Plasmid construction and plant transformation 6 Pyro-sequencing for quantitative analysis of copy number of transgenic mutant alleles 7 GUS staining 8 Result 9 Phenotype characterization of the NG5065 mutant 9 OsSPL16 expression pattern 9 Phenotype characterization of PcDD, OxH and OxM transgenic plants 10 Phenotype characterization of PmD transgenic plants 11 Discussion 13 The slp mutation is a neomorph 13 The SNP mutation of slp involves in glume development 13 Candidate genes regulated by OsSPL16 14 Reference 16 圖目錄 Figure 1. Schematic diagram of NG5065- Tos17 insertion mutant. 21 Figure 2. The grain morphology of the NG5065 line. 22 Figure 3. Expression activity of pSPL16::GUS in different tissues and organs. 23 Figure 4. The plant and grain morphology of OxH transgenic plants. 24 Figure 5. The morphology of T0 OxM transgenic plants. 25 Figure 6. Panicles of the OxM transgenic plants. 26 Figure 7. RT-PCR analysis on introduced OsSPL16 gene in OxH and OxM lines. 27 Figure 8. The panicle structure and fertile grain in PmD transgenic rice plants. 29 Figure 9. Grain morphology in PmD transgenic plants. 30 表目錄 Table 1. The phenotypes and genotypes of the T0 PmD transgenic lines. 31 附錄目錄 Appendix 1. Sequence comparison of the OsSPL16 gene between the Slp/Slp and slp/slp genotypes. 33 Appendix 2. Primer pairs used for the RT-PCR analysis 34 Appendix 3. The pSPL16com plasmid and construct flow chart. 35 Appendix 4. The pSPL16OxC plasmid and construct flow chart. 36 Appendix 5. pSPL16m plasmid and construct flow chart. 37 Appendix 6. pSPL16GUS plasmid and construct flow chart. 38 Appendix 7. Primer pairs list 39 Appendix 8. Gene expression difference up to 5x between Slp/Slp and slp/slp young inflorescence were listed. 40 | |
| dc.language.iso | en | |
| dc.subject | 內外穎;水稻;突變 | zh_TW |
| dc.subject | glumes;rice;mutant | en |
| dc.title | 水稻 stunt lemma palea 1 突變對偶基因的功能探討 | zh_TW |
| dc.title | Functional characterization of the stunt lemma palea 1 mutant allele in rice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳良築(Liang-Jwu Chen),常玉強(Yuh-Chyang Charng),洪傳揚(Hong Chwan-Yang) | |
| dc.subject.keyword | 內外穎;水稻;突變, | zh_TW |
| dc.subject.keyword | glumes;rice;mutant, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
