請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62817完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾鈞懋(Chun-Mao Tseng) | |
| dc.contributor.author | Yan-Fei Yeung | en |
| dc.contributor.author | 楊胤飛 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:11:21Z | - |
| dc.date.available | 2016-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-19 | |
| dc.identifier.citation | 參考文獻
中文部分 陳衛忠、李長松、胡芬(1997),東海區海洋漁業資源近況淺析。中國水產科學。4,39-43。 賴星宇(2009),2008 年晚春到初夏期間台灣周遭海域的二氧化碳交換通量與分佈。國立台灣師範大學海洋環境科技研究所碩士論文。 英文部分 Borges, A. and Gypens, N., 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology & Oceanography, 55(1): 346-353. Cai, W.J., Dai, M.H. and Wang, Y.C., 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 33(12): L12603. Chen, C.-T.A., 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems, 78(3): 394-410. Chen, C., Zhu, J., Beardsley, R.C. and Franks, P.J.S., 2003. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 30(10): 1515. Chen, C.C., Chiang, K.P., Gong, G.C., Shiah, F.K., Tseng, C.M. and Liu, K.K., 2006. Importance of planktonic community respiration on the carbon balance of the East China Sea in summer. Global Biogeochemical Cycles, 20(4): GB4001. Chen, C.T.A. and Borges, A.V., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8): 578-590. Chen, C.T.A. and Wang, S.L., 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104(C9): 20675-20686. Chen, C.T.A., Zhai, W. and Dai, M., 2008. Riverine input and air–sea CO2 exchanges near the Changjiang (Yangtze River) Estuary: Status quo and implication on possible future changes in metabolic status. Continental Shelf Research, 28(12): 1476-1482. Chou, W.-C., Gong, G.-C., Sheu, D.D., Hung, C.-C. and Tseng, T.-F., 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research, 114: C07026. Chou, W.C., Gong, G.C., Tseng, C.M., Sheu, D.D., Hung, C.C., Chang, L.P. and Wang, L.W., 2011. The carbonate system in the East China Sea in winter. Marine Chemistry, 123(1): 44-55. Da Cunha, L.C., Buitenhuis, E.T., Le Quere, C., Giraud, X. and Ludwig, W., 2007. Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Global Biogeochemical Cycles, 21(4): GB4007. Dai, A. and Trenberth, K.E., 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6): 660-687. Dickson, A.G. and Goyet, C., 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Gao, X. and Song, J., 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin, 50(3): 327-335. Gong, G.C., Chang, J., Chiang, K.P., Hsiung, T.M., Hung, C.C., Duan, S.W. and Codispoti, L.A., 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam? Geophysical Research Letters, 33(7): L07610. Gong, G.C., Chen, Y.L.L. and Liu, K.K., 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics. Continental Shelf Research, 16(12): 1561-1590. Gong, G.C., Wen, Y.H., Wang, B.W. and Liu, G.J., 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6): 1219-1236. Gypens, N., Borges, A. and Lancelot, C., 2009. Effect of eutrophication on air–sea CO2 fluxes in the coastal Southern North Sea: A model study of the past 50 years. Global Change Biology, 15(4): 1040-1056. Houghton, J., Ding, Y., Griggs, D., Noguer, M., Van Der Linden, P., Dai, X., Maskell, K. and Johnson, C., 2001. Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the international panel on climate change. Cambridge University Press Cambridge, 944. Jacobs, C.M.J., Kohsiek, W. and Oost, W.A., 1999. Air–sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE. Tellus B, 51(3): 629-641. Laruelle, G.G., Durr, H.H., Slomp, C.P. and Borges, A.V., 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37(15): L15607. Lewis, E., Wallace, D. and Allison, L.J., 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy. Liss, P., 1973. Processes of gas exchange across an air-water interface, Deep Sea Research, 20: 221-238. Liss, P.S. and Merlivat, L., 1986. Air-sea gas exchange rates: Introduction and synthesis, The Role of Air-Sea Exchange in Geochemical Cycling., pp. 113-127. Liss, P.S. and Slater, P.G., 1974. Flux of Gases across Air-Sea Interface. Nature, 247(5438): 181-184. Mackenzie, F., Lerman, A. and Andersson, A., 2004. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences, 1(1): 27-85. Millero, F.J., Byrne, R.H., Wanninkhof, R., Feely, R., Clayton, T., Murphy, P. and Lamb, M.F., 1993. The internal consistency of CO2 measurements in the equatorial Pacific. Marine Chemistry, 44(2): 269-280. Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J. and Upstill-Goddard, R.C., 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1): 373-387. Peng, T.H., Hung, J.J., Wanninkhof, R. and Millero, F.J., 1999. Carbon budget in the East China Sea in spring. Tellus Series B-Chemical and Physical Meteorology, 51(2): 531-540. Sarmiento, J.L. and Gruber, N., 2002. Sinks for anthropogenic carbon. Physics Today, 55(8): 30-36. Shim, J., Kim, D., Kang, Y.C., Lee, J.H., Jang, S.-T. and Kim, C.-H., 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research, 27(20): 2623-2636. Shen, P.Y. and Tseng, C.M., 2013. Temporal and spatial variations of sea surface fCO2 and its controlling factors in the East China Sea in summer 2003. Biogeosciences, (submitted). Siegenthaler, U. and Sarmiento, J.L., 1993. Atmospheric carbon-dioxide and the ocean. Nature, 365(6442): 119-125. Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W. and Sutherland, S., 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles, 7(4): 843-878. Tans, P.P., Fung, I.Y. and Takahashi, T., 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431-1438. Tseng, C.M., Liu, K.K., Gong, G.C., Shen, P.Y. and Cai, W.J., 2011. CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change. Geophysical Research Letters, 38(24): L24609. Tsunogai, S., Watanabe, S., Nakamura, J., Ono, T. and Sato, T., 1997. A preliminary study of carbon system in the East China Sea. Journal of Oceanography, 53(1): 9-17. Tsunogai, S., Watanabe, S. and Sato, T., 1999. Is there a 'continental shelf pump' for the absorption of atmospheric CO2? Tellus Series B-Chemical and Physical Meteorology, 51(3): 701-712. Wang, S.L., Chen, C.T.A., Hong, G.H. and Chung, C.S., 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20(4-5): 525-544. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange. Journal of Geophysical Research, 97(25): 7373-7382. Wanninkhof, R. and McGillis, W.R., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 26(13): 1889-1892. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203-215. Xu, K. and Milliman, J.D., 2009. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology, 104(3): 276-283. Zhai, W. and Dai, M., 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117(1-4): 2-10. Zhai, W., Dai, M. and Guo, X., 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry, 107(3): 342-356. Zhu, J., 2005. Distribution of chlorophyll-a off the Changjiang River and its dynamic cause interpretation. Science in China Series D—Earth Sciences, 47 (7): 950–956. Zhu, J., Wang, J., Shen, H. and Wu, H., 2005. Observation and analysis of the diluted water and red tide in the sea off the Changjiang River mouth in middle and late June 2003. Chinese Science Bulletin, 50(3): 240-247. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62817 | - |
| dc.description.abstract | 本研究主要是探討2006年秋季東海表水二氧化碳之空間分佈、控制機制與海氣交換通量之變化。本研究於2006年11月6日至16日利用海研一號815航次,在東海進行現場偵測海水與大氣中之二氧化碳分壓 (fCO2) 和水文參數。表水fCO2 範圍介於322.9 ~ 519.4 μatm,平均值為359.8 ± 20.3 μatm (n = 1425)。秋季 fCO2 在空間上具有獨特分佈,主要分四區 (長江口區、陸棚沿岸區、陸棚區與台灣東北海域),最高值出現在較低溫、低鹽之長江口區並有一個明顯向外海遞減的空間分佈,平均值為 422.1 ± 39.6 μatm,此區域同時也是營養鹽及葉綠素a峰值區;其他區域(陸棚沿岸區、陸棚區與台灣東北海域) 呈現較均值之空間分佈,平均值分別為367.1 ± 9.1 μatm、356.1 ± 11.7 μatm 與376.4 ± 11.7 μatm。依據過往溫度與葉綠素a所建立的經驗公式,將溫度、生物和垂直混合補充之作用對以上區域 fCO2之貢獻度進行分離,顯示溫度與生物的作用在各個區域變化差異少於20 μatm,而垂直混合之補充對各區域貢獻差異可大於100 μatm,這意味著秋季東海的空間分佈主要受控於垂直混合的補充。在夏季時沖淡水 (River plume) 內高的基礎生產力雖然增強了二氧化碳的吸收能力,但累積在次表層的有機碳並沒有完全移除至深海,至秋季時次表層高fCO2的海水帶至表層,提高表水fCO2之分佈,並抑制秋季東海對fCO2的吸收能力,甚至在長江口區驅使fCO2釋放至大氣。秋季東海陸棚區之二氧化碳海氣交換通量為 -0.7 ± 0.9 mol/m2/yr,是大氣二氧化碳的弱「匯」 (weak sink)。觀測結果與過往文獻中提到秋季東海是大氣二氧化碳的「源」 (source) 並不相符,主要因為過往文獻只侷限於長江河口和北東海域等小區域的研究,並不能代表整體東海的值。東海海氣交換通量在空間與時間分佈上有明顯的差異,並且受到人為與自然環境之因子的干擾,如何把每個機制分離出來,值得進一步研究。 | zh_TW |
| dc.description.abstract | The spatial distribution of sea surface fCO2 (fCO2w) with its controlling mechanisms and related air-sea exchange fluxes in the East China Sea (ECS) in fall 2006 was investigated. We performed the underway measurements of the air and sea surface fCO2, and hydrographic variables from November 6th to 16th 2006 during the field survey (OR1-815). The results showed that fCO2w ranged from 322.9 to 519.4μatm with an average of 359.8±20.3μatm (n=1425). The fCO2w in fall spatially exhibited a unique distribution pattern with four distinctive areas (e.g., Changjiang estuary (averaged: 422.1±39.6μatm), China coastal (367.1±9.1μatm), shelf (356.1±11.7μatm) and upwelling waters in northeastern Taiwan (376.4±11.7μatm). The highest fCO2w (>400μatm) was observed within the outer Changjiang estuary, which waters were cold and less saline with high chlorophyll-a and nutrient concentrations. Additionally, fCO2w levels apparently decreased from near-shore river mouth to offshore regions with contents which were near the whole averaged values. Based on empirical algorithms developed from SST and chlorophyll-a data in summer, the contributions of temperature, biological and vertical mixing effects on spatial fCO2 variations could be respectively estimated in four aforementioned areas of the ECS shelf. Consequently, variations on contributions of temperature and biological effects were less than 20μatm respectively among them, but that due to vertical mixing effect was greater than 100μatm. It suggests vertical mixing as the main factor controls the spatial fCO2 variation in the ECS in fall. In summer, a high CO2 uptake via biological activity takes place within the Changjiang plume in which high nutrients induce high biomass growth, and finally the CO2 was stored in subsurface and bottom layers of inner ECS shelf instead of being exported to the deep ocean. Further, the enriched-CO2 waters in subsurface layer would be brought to the surface in fall via vertical mixing. This effect would enhance the fCO2w contents in the surface, further hinder the CO2 uptake, and finally result in a net release of CO2 to the atmosphere from Changjiang plume area. However, the whole ECS shelf in fall acted as a weak sink of atmospheric CO2 with an averaged air-to-sea flux of -0.7 ± 0.9 molm-2yr-1. The results we obtained are not consistent with those reported by previous studies, which show the ECS as a CO2 source to the atmosphere in fall. It indicates small-scale spatial surveys which were previously performed in Changjiang estuary and northern ECS can’t be a representative of the whole ECS shelf. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:11:21Z (GMT). No. of bitstreams: 1 ntu-102-R98241405-1.pdf: 4701768 bytes, checksum: ede9da38d350c4be119b5479eb38c52c (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
致謝…....................................................i 中文摘要................................................. ii 英文摘要 ................................................iii 第一章 緒論..............................................1 1.1 研究背景.............................................1 1.2 研究動機與目的........................................2 第二章 研究材料與方法......................................5 2.1 研究區域.............................................5 2.2 研究方法.............................................7 2.3 儀器設備.............................................7 2.4 採樣及分析...........................................9 2.4.1 海水二氧化碳分壓 (fCO2w)............................9 2.4.2 大氣二氧化碳分壓 (fCO2a)............................9 2.5 其它參數之輔助資料....................................11 2.5.1 水文參數...........................................11 2.5.2 氣象資料...........................................11 2.6 內插計算方式.........................................12 2.7 二氧化碳之海氣交換通量計算.............................12 第三章 結果..............................................16 3.1 水文、化學與碳化學參數之空間分佈.......................16 3.1.1 水文及化學參數之空間分佈............................17 3.1.2 大氣二氧化碳 (fCO2a) 之空間分佈.....................17 3.1.3 表水二氧化碳分壓 (fCO2w) 之空間分佈..................18 3.1.4 表水二氧化碳分壓差值 (△fCO2) 之空間分佈..............18 3.2 水文參數之垂直剖面分佈................................20 第四章 討論..............................................22 4.1 東海流場分佈區域特性..................................22 4.2 水文、化學及碳化學參數之航跡時序分析....................25 4.3 fCO2w之控制機制探討..................................27 4.3.1 fCO2w與溫度之關係..................................28 4.3.2 fCO2w at 25 ℃鹽度之關係...........................30 4.3.3 fCO2w at 25 ℃與葉綠素a之間關係.....................32 4.3.4 溫度、生物與垂直混合的作用對 fCO2W貢獻之空間分佈.......33 4.4 2006年11 月東海二氧化碳海氣交換通量....................37 4.4.1 秋季東海二氧化碳海氣交換通量之空間分佈................40 4.4.2 東海秋季各水型間之分析與比較.........................40 4.5 東海水文參數與fCO2w之時間變化.........................43 4.6 夏季到冬季之fCO2w之轉換..............................46 4.6.1 夏季到冬季的 (fCO2_temp)、(dfCO2_bio)、(dfCO2_add) 之貢獻度....................................................46 4.6.2 東海fCO2w於6月~8月及8月~1 月兩者之差異..............48 第五章 結論..............................................49 參考文獻.................................................50 附錄一 標準品測量值與標定值之比較..........................55 附錄二 水文參數校正......................................56 圖目錄 圖 1 全球邊緣海之二氧化碳海氣交換通量研究圖..................3 圖 2 過往文獻東海研究之測站位置圖...........................4 圖 3 研究區域航跡圖.......................................6 圖 4 二氧化碳分壓自動分析系統示意圖.........................8 圖 5 大氣與表水二氧化碳分壓採樣設架設示意圖.................10 圖 6 水文參數、化學及碳化學參數空間分佈圖...................19 圖 7 水文參數垂直剖面空間分佈圖............................21 圖 8 表水溫-鹽分佈及fCO2w分佈圖...........................23 圖 9 東海流場分佈及區域分佈圖.............................24 圖 10 水文參數、化學及碳化學參數航跡時序圖...................26 圖 11 fCO2w與溫度之關係圖.................................29 圖 12 fCO2w at 25℃與鹽度之關係圖.........................31 圖 13 fCO2w at 25℃與葉綠素a之關係圖......................32 圖 14 fCO2_temp、dfCO2_bio、dfCO2_add對fCO2w貢獻之空間分佈圖 ........................................................35 圖 15 dfCO2_add 與溫度之關係圖...........................36 圖16 氣體交換系數與風速的關係圖............................38 圖 17 彭佳嶼測站風速時序分佈圖.............................39 圖 18 二氧化碳海氣交換通量之空間分佈圖......................40 圖 19 各區域面積百分比率、ΔfCO2、CO2 flux、CO2吸收(釋放)之總量比較......................................................42 圖 20 fCO2_temp、dfCO2_bio、dfCO2_add 於6~1月之個別貢獻度示意圖 ........................................................47 圖 21 6~8月和8月~1月過程中fCO2主要控制機制之比較圖..........48 圖 22 二氧化碳標準品測量值與標定值之差異圖..................55 圖 23 表水溫度與鹽度之校正................................56 圖 24 瑩光值與葉綠素a之校正...............................57 表目錄 表 1 各種氣體交換速率常數k與風速的係式......................13 表 2 各fCO2_temp、dfCO2_bio、dfCO2_add對fCO2w貢獻之空間分佈 ........................................................34 表 3 東海陸棚區海氣間二氧化碳交通換量.......................38 表 4 夏季至冬季之水文參數、化學及碳化學參數比較..............45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 東海 | zh_TW |
| dc.subject | 二氧化碳分壓 | zh_TW |
| dc.subject | 二氧化碳吸收能力 | zh_TW |
| dc.subject | 大陸棚幫浦 | zh_TW |
| dc.subject | 二氧化碳海氣交換通量 | zh_TW |
| dc.subject | air-sea exchange | en |
| dc.subject | East China Sea shelf | en |
| dc.subject | Sea surface fCO2 | en |
| dc.subject | CO2 uptake | en |
| dc.subject | Changjiang plume | en |
| dc.title | 2006年秋季東海表水二氧化碳之空間分佈與控制機制探討 | zh_TW |
| dc.title | Distribution of sea surface fCO2 and controlling factors in the East China Sea in fall 2006 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉康克(Kon-Kee Liu),余英芬(Ein-Fen Yu),陳宗岳 | |
| dc.subject.keyword | 東海,二氧化碳分壓,二氧化碳吸收能力,大陸棚幫浦,二氧化碳海氣交換通量, | zh_TW |
| dc.subject.keyword | East China Sea shelf,Sea surface fCO2,CO2 uptake,Changjiang plume,air-sea exchange, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
