Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62795Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張孟基 | |
| dc.contributor.author | Yong-Jie Wang | en |
| dc.contributor.author | 王泳傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:10:39Z | - |
| dc.date.available | 2018-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-20 | |
| dc.identifier.citation | Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010a) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiologiae Plantarum 32: 551-563
Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010b) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation 60: 51-59 Biehler K, Fock H (1994) Evidence for the contribution of the Mehler -Peroxidase reaction in dis -sipating excess electrons in drought-stressed wheat. Plant Physiology 112:265-72. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of naturalcis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123: 1279-1291 Cha-um S, Yooyongwech S, Supaibulwatana K (2010) Water deficit stress in the reproductive staged of four indica rice (Oryza Sativa L.) genotypes. Pakiston Journal of Batony 42: 3387-3398 Chutipaijit S, Cha-um S, Sompornpailin K (2012) An evaluation of water deficit tolerance screening in pigmented indica genotypes. Pakiston Journal of Batony 44: 65-72 Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the belta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiology 154: 1304-1318 Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Motoaki Seki3, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice,Oryza sativaL., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 33: 751-763 Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics 280: 547-563 Forcy CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environment 17:507 -23. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell 17: 3470-3488 Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 141: 15-27 Gana AS (2011) Screening and resistance of traditional and improved cultivars of rice to drought stress at Badeggi, Niger State, Nigeria. Agriculture and Biology Journal of North America 2: 1027-1031 Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS 99: 15898-15903 Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930 Goyal A (1987) Effects of water stress on glycolate metabolism in the leaves of rice seedlings (Oryza sativa). Physiologia Plantarum 69: 289–294. Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry 44: 828–836 Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and Physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology 154: 1254-1271 Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV, Roosens NHln (2003) Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Science 165: 1059-1068 Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103: 12987–12992 Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology 67: 169-181 Hur J, Jung K-H, Lee C-H, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science 167: 417-426 Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of Plant Physiology 169: 334-344 Jin Q-y, You-nan O, Sheng-miao Y, De-hai X, Guo-ping Z (2003) Influence of soil drought stress on leaf rolling index in different rice varieties. 17: 349-354 Khush GS, Coffman WR (1977) Genetic Evaluation and Utilization (GEU) Program the rice improvement program of the international rice research institute. Theoretical and Applied Genetics 51: 97-110 Lenka SK, Katiyar A, Chinnusamy V, Bansa KC (2011) Comparative analysis of drought-responsive transcriptome in indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal 9: 315-327 Luis LM, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant Journal 32 Meng C, Wenjiao Z, Zhanga Q, Zhiqiang X, Zhengge Z, Faping D, Wub R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry 48: 1384-1391 Miller G, Honig A, Stein H, Suzuki N, RonMittler, Zilberstein A (2009) Unraveling 1-Pyrroline-5-Carboxylate-Proline Cycle in Plants by Uncoupled Expression of Proline Oxidation Enzymes. The Journal of Biological Chemistry 284: 2684-2642 Nakashima K, Tran L-SP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal 51: 617-630 Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal 34: 137-148 Nuruzzaman M, Sharoni AM, Satoh K, Moumeni A, Venuprasad R, Serraj R, Kumar A, Leung H, Attia K, Kikuchi S (2012) Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. Molecular Genetics and Genomics 287: 389-410 Roy R, Mazumder PB, Sharma GD (2009) Proline, catalase and root traits as indices of drought resistance in bold grained rice (Oryza sativa) genotypes. African Journal of Biotechnology 8: 6521-6528 Sakuma Y, Kyonoshin Maruyama, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18: 1292-1309 Sarvestani ZT, Pirdashti H, Sanavy SAMM, Balouchi H (2008) Study of water stress Effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pakiston Journal of Biological Science 11: 1303-1309 Setter TL (2012) Analysis of constituents for phenotyping drought tolerance in crop improvement. Frontiers in Physiology 3:180. doi: 10.3389/fphys.2012.00180 Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recoverypce. Plant, Cell and Environment 33:1838-1851 Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology 157: 292-304 Sigari TA, Akira Y, Kamoshita A, Wade LJ (2000) Genotypic variation in response of rainfed lowland rice to drought and rewatering. Plant Production Science 3: 180-188 Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology 158: 1755–1768 Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany 62: 2485-2494 Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany 57: 201-212 Wang F-Z, Wang Q-B, Kwon S-Y, Kwak S-S, Su W-A (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology 162: 465-472 Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148: 1938-1952 Xiong L, Ishitani M, Lee H, Zhu J-K (2001) The Arabidopsis LOS5/ABA3 locus encodes a Molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. The Plant Cell 13: 2063-2083 Xiong L, Lee H, Ishitani M, Zhu J-K (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. The Jurnal of Biological Chemistry 277: 8588-8596 Yooyongwech S, Cha-um S, Supaibulwatana K (2012) Proline related genes expression and physiological changes in indica rice response to water-deficit stress. Plant Omics 5: 597-603 You J, Hu H, Xiong L (2012) An ornithine delta-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Science 197: 59-69 Zhao L, Hu Y, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany 105: 401-409 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62795 | - |
| dc.description.abstract | 乾旱逆境影響水稻生長發育造成產量減少,乃至死亡。因此研究水稻乾旱逆境耐受性的反應機制並探討影響其耐受性的原因相當重要。本實驗以乾旱敏感的IR64及篩選出的IR64疊氮化鈉誘變系SM13以及SM47,進行乾旱逆境耐受性之生理反應及相關基因表現之比較。利用23.3% PEG水耕液所產生的高滲透勢模擬乾旱的條件,希望建立可用以鑑別水稻乾旱耐受性之有用生理指標。以葉片乾枯程度為傷害係數觀察到SM13、SM47比IR64有較好的外觀形態。在生理反應上包括相對水含量、光合作用效率、過氧化氫、MDA含量及葉部DAB染色過氧化氫,試驗顯示SM13、SM47亦有較佳之乾旱逆境耐受性。由於一般植物會以累積滲透調控物質方式適應乾旱逆境,因此探討逆境下地上部、地下部脯胺酸的累積現象,以及地上部可溶糖類累積,但結果只有根部脯胺酸含量與觀察到的耐旱結果一致。而逆境下抗氧化酵素SOD的活性上,以SM47有較高活性,而在SM13提升則較為平緩。最後分析乾旱耐受性相關基因之表現,發現除了SM13的OsSNAC1不受影響,其OsNAC6、OsSNAC1基因都受到誘導。此外調控類胡蘿蔔素合成基因DSM2在SM47中受到誘導,可藉此影響離層酸合成以及影響離層酸下游調控基因反應。而轉錄因子OsbZIP23在SM13、SM47受PEG誘導調控,趨勢與ABA相關基因OsDREB2A一致,顯示兩突變系可經由轉錄因子之調控,引發下游乾旱耐受反應。此外PEG處理亦誘導SM13、SM47脯胺酸合成基因OsP5CS1及OsP5CS2之表現,尤其在OsP5CS2,而SM47的OsOAT之所以受到誘導現象,可能藉由OsSNAC2/OsNAC6調控下游基因OsOAT引發由粒線體中合成脯胺酸的途徑,藉著累積脯胺酸一方面維持滲透勢一方面調節氧化還原。總而言之,SM13及SM47突變系對於PEG逆境下可能透過基因調控進而累積較多脯胺酸,維持滲透壓,同時也保護氧化還原的平衡,使得逆境下得以維持相對水含量,維持較高光合效率,造成較好的乾旱耐受性。 | zh_TW |
| dc.description.abstract | Drought stress affects rice (Oryza sativa) growth, reduces yield and even causes death. Thus, it is very important to understand the physiological mechanism related to rice drought stress response and tolerance. This study aims to compare the physiological responses and gene expressions among sensitive variety IR64, and its sodium azide-mutant lines SM13、SM47 under PEG treatment. The results showed that based on the damage score of leaf driness level, SM13 and SM47 appeared to have better tolerant morphology under stress. Similar results were obtained using other physiological assay, including relative water content, photosynthesis efficiency, H2O2 content, MDA content and in situ H2O2 staining. Since most plants accumulate osmolytes to adapt the drought stress, the proline accumulation in the whole plant and total soluble sugars content in the shoot were also investigated. However, only the proline content in SM47 root was correlated with the extent of drought tolerance. Besides, SM47 showed relative high antioxidant enzyme SOD activity while SM13 did not change the enzymatic activity. We also examined the genes expression profile of many drought tolerant related genes, the result indicated that OsNAC6 and OsSNAC1 gene induced wilthin all rice lines, but OsSNAC1 induced specifically in SM13. DSM2 gene, involved in controlling the xanthophylls synthesis, was increased in SM47, which may influence the ABA synthesis and downstream regulation response. In addition, SM13 and SM47 seem to be able to regulate the drought tolerance downstream response by inducing the expression of drought responsive related transcription factors, OsbZIP23 and OsDREB2A. Meanwhile, the expression of OsP5CS1 and OsP5CS2, two proline synthesis genes, were also induced by stress. In SM47, the proline may be accumulated by OsNAC6 which regulate the downstream gene encode OsOAT, then stimulate the proline synthesis in mitochondria. To sum up, the SM13 and SM47 showed better drought tolerance by regulating the gene expression related to the accumulation of proline, which maintains the osmolality, adjusting the homeostasis of the reduction-oxidation status and retains the water content. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:10:39Z (GMT). No. of bitstreams: 1 ntu-102-R97621116-1.pdf: 2353161 bytes, checksum: 168d0203bf41b573a4aaaa6c9563867f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄 1
圖表目錄 4 中文摘要 5 Abstract 6 第一章 8 第二章 前人研究 10 一、 水稻逆境篩選機制之評價 10 二、 作物對乾旱耐受性調控生理機制 11 1. 乾旱下外觀型態變化 12 2. 乾旱下生理生化指標 12 3. 乾旱逆境下滲透調節物質情況-脯胺酸(Proline) 13 三、 逆境相關調賀爾蒙與逆境調控控基因(TF、下游基因) 14 1. 經由非離層酸調控途徑之乾旱耐受機制 14 2. 經由離層酸調控途徑之乾旱耐受機制 14 3. 透過NAC轉錄基因之乾旱耐受調控 14 4. 透過OsbZIP轉錄因子之乾旱耐受調控 15 5. 透過OsDREB轉錄因子有關之乾旱耐受調控 15 四、 乾旱逆境下調控氧化逆境的機制 16 1. 氧化逆境的發生 16 2. 活化氧族的種類 16 3. 乾旱下植物透過抗氧化物消除活化氧族 17 五、 水稻乾旱逆境下之生理研究指標與耐受性關聯之研究 18 六、 實驗架構及目的 19 材料方法 20 一、 水稻材料 20 1. 材料品種 20 2. 材料背景 20 二、 水稻生長條件以及逆境處理 20 1. 水稻種子催芽及成長條件 20 2. 四葉齡幼苗之外表型耐性檢定及生理條件測定之乾旱處理條件 21 三、 水稻幼苗生理分析 21 1. 脂質過氧化分析測定 21 2. 脯胺酸(proline)含量測定 22 3. 過氧化氫(H2O2)含量以及定性測定 22 4. 葉綠素螢光放射(Fv / Fm)測定 23 5. 相對含水量測定 23 6. 可溶糖類(Total soluble sugars)含量之測定 23 7. 酵素SOD測定 24 四、 水稻基因表現分析 25 1. 水稻RNA提取 25 2. RNA瓊脂凝膠電泳分析 25 3. 去除殘留genomic DNA 26 4. 反轉錄合成cDNA 之反應 26 5. 即時同步PCR基因表現分析 26 6. 數據統計分析 27 第三章 結果 28 一、 水稻IR64及SM13、SM47幼苗滲透壓逆境下外觀形態變化 28 1. PEG逆境下之外觀形態變化 28 2. PEG逆境下失水情況以及光合作用效率 28 二、 水稻IR64及SM13、SM47 PEG逆境下之生化生理反應 29 1. PEG逆境以及逆境解除下過氧化氫的累積情況 29 2. PEG逆境下氧化傷害指標過氧化氫以及MDA定量 29 3. PEG逆境下脯胺酸含量的生成累積情況 30 4. 乾旱逆境下水稻幼苗葉片可溶糖含量生成情況 30 5. 超氧離子歧化酶活性測定 30 6. 逆境情況下綜合能力分析 31 三、 IR64及SM13、SM47水稻突變品系乾旱相關及耐受基因之擾動 31 1. PEG逆境下受離層酸調控OsNAC基因表現情形 31 2. PEG逆境下OsbZIP轉錄因子表現情形 32 3. PEG逆境下OsDREB2A以及OsDHN1的表現 32 4. 乾旱逆境下影響脯胺酸生合成基因的表現 32 5. PEG逆境下乾旱相關基因的表現情形 33 6. 以Heatmap表示各個品種以及各基因表現在逆境下表現情形 33 第四章 討論 35 一、 由疊氮化鈉突變中找到具外觀形態較為耐旱的突變系 35 二、 PEG逆境之耐受性與氧化逆境指標呈負相關 35 三、 PEG逆境下滲透調節物質累積 36 1. 脯胺酸累積情況 36 2. 可溶糖累積情況 37 四、 乾旱逆境下水稻基因調控反應 38 五、 乾旱逆境之綜合探述 40 第五章 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 乾旱逆境耐受性 | zh_TW |
| dc.subject | 氮化鈉 | zh_TW |
| dc.subject | IR64 | zh_TW |
| dc.subject | 生理反應 | zh_TW |
| dc.subject | 脯胺酸 | zh_TW |
| dc.subject | 可溶糖 | zh_TW |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | soluble sugar | en |
| dc.subject | proline | en |
| dc.subject | gene expression | en |
| dc.subject | rice (Oryza sativa L.) | en |
| dc.subject | drought stress tolerance | en |
| dc.subject | sodium azide | en |
| dc.subject | IR64 | en |
| dc.subject | physiological response | en |
| dc.title | 比較水稻IR64耐旱突變系之生理反應及其相關基因表現 | zh_TW |
| dc.title | Comparison of Physiological Response and Relative Gene Expression of IR64 Drought-tolerant Rice mutant lines(Oryza sativa L.) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林彥蓉 | |
| dc.contributor.oralexamcommittee | 吳永培(wuypei@dns.caes.gov.tw),洪傳揚(cyhong@ntu.edu.tw) | |
| dc.subject.keyword | 水稻,乾旱逆境耐受性,叠,氮化鈉,IR64,生理反應,脯胺酸,可溶糖,基因表現, | zh_TW |
| dc.subject.keyword | rice (Oryza sativa L.),drought stress tolerance,sodium azide,IR64,physiological response,proline,soluble sugar,gene expression, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 2.3 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
