Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋
dc.contributor.authorCheng-Chou Yuen
dc.contributor.author游成州zh_TW
dc.date.accessioned2021-06-16T16:10:23Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-02-22
dc.identifier.citation1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860-867.
2. Beswick EJ, Suarez G, Reyes VE (2006) H pylori and host interactions that influence pathogenesis. World J Gastroenterol 12: 5599-5605.
3. Blanchard TG, Drakes ML, Czinn SJ (2004) Helicobacter infection: pathogenesis. Curr Opin Gastroenterol 20: 10-15.
4. Correa P (2004) Is gastric cancer preventable? Gut 53: 1217-1219.
5. Ernst PB, Peura DA, Crowe SE (2006) The translation of Helicobacter pylori basic research to patient care. Gastroenterology 130: 188-206; quiz 212-183.
6. Moss SF, Blaser MJ (2005) Mechanisms of disease: Inflammation and the origins of cancer. Nat Clin Pract Oncol 2: 90-97; quiz 91 p following 113.
7. Peek RM, Jr., Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2: 28-37.
8. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74-108.
9. Correa P (1996) Helicobacter pylori and gastric cancer: state of the art. Cancer Epidemiol Biomarkers Prev 5: 477-481.
10. Correa P, Houghton J (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology 133: 659-672.
11. Sipponen P, Marshall BJ (2000) Gastritis and gastric cancer. Western countries. Gastroenterol Clin North Am 29: 579-592, v-vi.
12. Correa P, Haenszel W, Cuello C, Zavala D, Fontham E, et al. (1990) Gastric precancerous process in a high risk population: cohort follow-up. Cancer Res 50: 4737-4740.
13. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52: 6735-6740.
14. Chan AO, Wong BC, Lam SK (2001) Gastric cancer: past, present and future. Can J Gastroenterol 15: 469-474.
15. Correa P (2002) Gastric neoplasia. Curr Gastroenterol Rep 4: 463-470.
16. Kelly MA, Rayner ML, Mijovic CH, Barnett AH (2003) Molecular aspects of type 1 diabetes. Mol Pathol 56: 1-10.
17. Stadtlander CT, Waterbor JW (1999) Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis 20: 2195-2208.
18. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.
19. Montecucco C, Rappuoli R (2001) Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2: 457-466.
20. (1994) Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61: 1-241.
21. Labenz J, Borsch G (1994) Evidence for the essential role of Helicobacter pylori in gastric ulcer disease. Gut 35: 19-22.
22. (1993) An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. Lancet 341: 1359-1362.
23. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, et al. (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325: 1127-1131.
24. Barreto-Zuniga R, Maruyama M, Kato Y, Aizu K, Ohta H, et al. (1997) Significance of Helicobacter pylori infection as a risk factor in gastric cancer: serological and histological studies. J Gastroenterol 32: 289-294.
25. Hu PJ, Mitchell HM, Li YY, Zhou MH, Hazell SL (1994) Association of Helicobacter pylori with gastric cancer and observations on the detection of this bacterium in gastric cancer cases. Am J Gastroenterol 89: 1806-1810.
26. Miehlke S, Hackelsberger A, Meining A, von Arnim U, Muller P, et al. (1997) Histological diagnosis of Helicobacter pylori gastritis is predictive of a high risk of gastric carcinoma. Int J Cancer 73: 837-839.
27. Nomura AM, Stemmermann GN, Chyou PH (1995) Gastric cancer among the Japanese in Hawaii. Jpn J Cancer Res 86: 916-923.
28. (1994) IARC working group on the evaluation of carcinogenic risks to humans: some industrial chemicals. Lyon, 15-22 February 1994. IARC Monogr Eval Carcinog Risks Hum 60: 1-560.
29. Huang JQ, Sridhar S, Chen Y, Hunt RH (1998) Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114: 1169-1179.
30. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, et al. (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404: 398-402.
31. Ogura K, Maeda S, Nakao M, Watanabe T, Tada M, et al. (2000) Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med 192: 1601-1610.
32. Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, et al. (1999) Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 116: 1319-1329.
33. Sung JJ, Leung WK, Go MY, To KF, Cheng AS, et al. (2000) Cyclooxygenase-2 expression in Helicobacter pylori-associated premalignant and malignant gastric lesions. Am J Pathol 157: 729-735.
34. Eberhart CE, Dubois RN (1995) Eicosanoids and the gastrointestinal tract. Gastroenterology 109: 285-301.
35. Romano M, Ricci V, Memoli A, Tuccillo C, Di Popolo A, et al. (1998) Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. J Biol Chem 273: 28560-28563.
36. Sawaoka H, Kawano S, Tsuji S, Tsuji M, Sun W, et al. (1998) Helicobacter pylori infection induces cyclooxygenase-2 expression in human gastric mucosa. Prostaglandins Leukot Essent Fatty Acids 59: 313-316.
37. McCarthy CJ, Crofford LJ, Greenson J, Scheiman JM (1999) Cyclooxygenase-2 expression in gastric antral mucosa before and after eradication of Helicobacter pylori infection. Am J Gastroenterol 94: 1218-1223.
38. Pomorski T, Meyer TF, Naumann M (2001) Helicobacter pylori-induced prostaglandin E(2) synthesis involves activation of cytosolic phospholipase A(2) in epithelial cells. J Biol Chem 276: 804-810.
39. Vertegaal AC, Kuiperij HB, Yamaoka S, Courtois G, van der Eb AJ, et al. (2000) Protein kinase C-alpha is an upstream activator of the IkappaB kinase complex in the TPA signal transduction pathway to NF-kappaB in U2OS cells. Cell Signal 12: 759-768.
40. Xia HH, Talley NJ (2001) Apoptosis in gastric epithelium induced by Helicobacter pylori infection: implications in gastric carcinogenesis. Am J Gastroenterol 96: 16-26.
41. Shirin H, Sordillo EM, Kolevska TK, Hibshoosh H, Kawabata Y, et al. (2000) Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27(kip1). Infect Immun 68: 5321-5328.
42. Peek RM, Jr., Moss SF, Tham KT, Perez-Perez GI, Wang S, et al. (1997) Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J Natl Cancer Inst 89: 863-868.
43. Peek RM, Jr., Blaser MJ, Mays DJ, Forsyth MH, Cover TL, et al. (1999) Helicobacter pylori strain-specific genotypes and modulation of the gastric epithelial cell cycle. Cancer Res 59: 6124-6131.
44. Chow KW, Bank S, Ahn J, Roberts J, Blumstein M, et al. (1995) Helicobacter pylori infection does not increase gastric antrum mucosal cell proliferation. Am J Gastroenterol 90: 64-66.
45. Bechi P, Romagnoli P, Bacci S, Dei R, Amorosi A, et al. (1996) Helicobacter pylori and duodenal ulcer: evidence for a histamine pathways-involving link. Am J Gastroenterol 91: 2338-2343.
46. Peek RM, Jr., Wirth HP, Moss SF, Yang M, Abdalla AM, et al. (2000) Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology 118: 48-59.
47. Chan CH, Ko CC, Chang JG, Chen SF, Wu MS, et al. (2006) Subcellular and functional proteomic analysis of the cellular responses induced by Helicobacter pylori. Mol Cell Proteomics 5: 702-713.
48. Vale RD (2000) AAA proteins. Lords of the ring. J Cell Biol 150: F13-19.
49. Wang Q, Song C, Li CC (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 146: 44-57.
50. Naito Y, Yoshikawa T (2002) Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic Biol Med 33: 323-336.
51. Mobley HL (1996) The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration. Aliment Pharmacol Ther 10 Suppl 1: 57-64.
52. Asai T, Tomita Y, Nakatsuka S, Hoshida Y, Myoui A, et al. (2002) VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn J Cancer Res 93: 296-304.
53. Juttner S, Cramer T, Wessler S, Walduck A, Gao F, et al. (2003) Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell Microbiol 5: 821-834.
54. Naumann M, Crabtree JE (2004) Helicobacter pylori-induced epithelial cell signalling in gastric carcinogenesis. Trends Microbiol 12: 29-36.
55. Tatsuguchi A, Sakamoto C, Wada K, Akamatsu T, Tsukui T, et al. (2000) Localisation of cyclooxygenase 1 and cyclooxygenase 2 in Helicobacter pylori related gastritis and gastric ulcer tissues in humans. Gut 46: 782-789.
56. Nardone G, Rocco A, Vaira D, Staibano S, Budillon A, et al. (2004) Expression of COX-2, mPGE-synthase1, MDR-1 (P-gp), and Bcl-xL: a molecular pathway of H pylori-related gastric carcinogenesis. J Pathol 202: 305-312.
57. Peters JM, Walsh MJ, Franke WW (1990) An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. Embo J 9: 1757-1767.
58. Pinter M, Jekely G, Szepesi RJ, Farkas A, Theopold U, et al. (1998) TER94, a Drosophila homolog of the membrane fusion protein CDC48/p97, is accumulated in nonproliferating cells: in the reproductive organs and in the brain of the imago. Insect Biochem Mol Biol 28: 91-98.
59. Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3: 740-744.
60. Moir D, Stewart SE, Osmond BC, Botstein D (1982) Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100: 547-563.
61. Rouiller I, DeLaBarre B, May AP, Weis WI, Brunger AT, et al. (2002) Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat Struct Biol 9: 950-957.
62. DeLaBarre B, Brunger AT (2003) Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol 10: 856-863.
63. Song C, Wang Q, Li CC (2003) ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J Biol Chem 278: 3648-3655.
64. Wang Q, Song C, Li CC (2003) Hexamerization of p97-VCP is promoted by ATP binding to the D1 domain and required for ATPase and biological activities. Biochem Biophys Res Commun 300: 253-260.
65. Wang Q, Song C, Yang X, Li CC (2003) D1 ring is stable and nucleotide-independent, whereas D2 ring undergoes major conformational changes during the ATPase cycle of p97-VCP. J Biol Chem 278: 32784-32793.
66. Nishikori S, Esaki M, Yamanaka K, Sugimoto S, Ogura T (2011) Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J Biol Chem 286: 15815-15820.
67. Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, et al. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107: 667-677.
68. Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8: 65-71.
69. Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21: 615-621.
70. Halawani D, Latterich M (2006) p97: The cell's molecular purgatory? Mol Cell 22: 713-717.
71. Jentsch S, Rumpf S (2007) Cdc48 (p97): a 'molecular gearbox' in the ubiquitin pathway? Trends Biochem Sci 32: 6-11.
72. Latterich M, Frohlich KU, Schekman R (1995) Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82: 885-893.
73. Rabouille C, Levine TP, Peters JM, Warren G (1995) An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82: 905-914.
74. Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, et al. (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388: 75-78.
75. Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, et al. (2001) Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 3: 1086-1091.
76. Ramadan K, Bruderer R, Spiga FM, Popp O, Baur T, et al. (2007) Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450: 1258-1262.
77. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414: 652-656.
78. Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, et al. (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4: 134-139.
79. Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22: 626-634.
80. Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, et al. (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102: 577-586.
81. Janiesch PC, Kim J, Mouysset J, Barikbin R, Lochmuller H, et al. (2007) The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9: 379-390.
82. Sasagawa Y, Otani M, Higashitani N, Higashitani A, Sato K, et al. (2009) Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner. J Cell Sci 122: 3663-3672.
83. Cao K, Nakajima R, Meyer HH, Zheng Y (2003) The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115: 355-367.
84. Fu X, Ng C, Feng D, Liang C (2003) Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol 163: 21-26.
85. Mouysset J, Deichsel A, Moser S, Hoege C, Hyman AA, et al. (2008) Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc Natl Acad Sci U S A 105: 12879-12884.
86. Partridge JJ, Lopreiato JO, Jr., Latterich M, Indig FE (2003) DNA damage modulates nucleolar interaction of the Werner protein with the AAA ATPase p97/VCP. Mol Biol Cell 14: 4221-4229.
87. Indig FE, Partridge JJ, von Kobbe C, Aladjem MI, Latterich M, et al. (2004) Werner syndrome protein directly binds to the AAA ATPase p97/VCP in an ATP-dependent fashion. J Struct Biol 146: 251-259.
88. Higashiyama H, Hirose F, Yamaguchi M, Inoue YH, Fujikake N, et al. (2002) Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ 9: 264-273.
89. Yamanaka K, Okubo Y, Suzaki T, Ogura T (2004) Analysis of the two p97/VCP/Cdc48p proteins of Caenorhabditis elegans and their suppression of polyglutamine-induced protein aggregation. J Struct Biol 146: 242-250.
90. Kobayashi T, Manno A, Kakizuka A (2007) Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes Cells 12: 889-901.
91. Song C, Wang Q, Li CC (2007) Characterization of the aggregation-prevention activity of p97/valosin-containing protein. Biochemistry 46: 14889-14898.
92. Nishikori S, Yamanaka K, Sakurai T, Esaki M, Ogura T (2008) p97 Homologs from Caenorhabditis elegans, CDC-48.1 and CDC-48.2, suppress the aggregate formation of huntingtin exon1 containing expanded polyQ repeat. Genes Cells 13: 827-838.
93. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, et al. (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187: 875-888.
94. Vesa J, Su H, Watts GD, Krause S, Walter MC, et al. (2009) Valosin containing protein associated inclusion body myopathy: abnormal vacuolization, autophagy and cell fusion in myoblasts. Neuromuscul Disord 19: 766-772.
95. Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, et al. (2010) Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 190: 965-973.
96. Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, et al. (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6: 217-227.
97. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, et al. (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367-1380.
98. Ye Y (2006) Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J Struct Biol 156: 29-40.
99. Schuberth C, Buchberger A (2008) UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci 65: 2360-2371.
100. Madsen L, Seeger M, Semple CA, Hartmann-Petersen R (2009) New ATPase regulators--p97 goes to the PUB. Int J Biochem Cell Biol 41: 2380-2388.
101. DeLaBarre B, Christianson JC, Kopito RR, Brunger AT (2006) Central pore residues mediate the p97/VCP activity required for ERAD. Mol Cell 22: 451-462.
102. Dai RM, Chen E, Longo DL, Gorbea CM, Li CC (1998) Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem 273: 3562-3573.
103. Alexandru G, Graumann J, Smith GT, Kolawa NJ, Fang R, et al. (2008) UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134: 804-816.
104. Weihl CC, Dalal S, Pestronk A, Hanson PI (2006) Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 15: 189-199.
105. Weihl CC, Miller SE, Hanson PI, Pestronk A (2007) Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet 16: 919-928.
106. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552-1555.
107. Dantuma NP, Groothuis TA, Salomons FA, Neefjes J (2006) A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J Cell Biol 173: 19-26.
108. Wojcik C, Yano M, DeMartino GN (2004) RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J Cell Sci 117: 281-292.
109. Kitami MI, Kitami T, Nagahama M, Tagaya M, Hori S, et al. (2006) Dominant-negative effect of mutant valosin-containing protein in aggresome formation. FEBS Lett 580: 474-478.
110. Ju JS, Miller SE, Hanson PI, Weihl CC (2008) Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. J Biol Chem 283: 30289-30299.
111. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, et al. (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179: 485-500.
112. Weihl CC, Temiz P, Miller SE, Watts G, Smith C, et al. (2008) TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry 79: 1186-1189.
113. Egerton M, Samelson LE (1994) Biochemical characterization of valosin-containing protein, a protein tyrosine kinase substrate in hematopoietic cells. J Biol Chem 269: 11435-11441.
114. Li G, Zhao G, Schindelin H, Lennarz WJ (2008) Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. Biochem Biophys Res Commun 375: 247-251.
115. Lavoie C, Chevet E, Roy L, Tonks NK, Fazel A, et al. (2000) Tyrosine phosphorylation of p97 regulates transitional endoplasmic reticulum assembly in vitro. Proc Natl Acad Sci U S A 97: 13637-13642.
116. Madeo F, Schlauer J, Zischka H, Mecke D, Frohlich KU (1998) Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p. Mol Biol Cell 9: 131-141.
117. Klein JB, Barati MT, Wu R, Gozal D, Sachleben LR, Jr., et al. (2005) Akt-mediated valosin-containing protein 97 phosphorylation regulates its association with ubiquitinated proteins. J Biol Chem 280: 31870-31881.
118. Vandermoere F, El Yazidi-Belkoura I, Slomianny C, Demont Y, Bidaux G, et al. (2006) The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J Biol Chem 281: 14307-14313.
119. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51: 15-36.
120. Yasuda M, Kuwano H, Watanabe M, Toh Y, Ohno S, et al. (2000) p53 expression in squamous dysplasia associated with carcinoma of the oesophagus: evidence for field carcinogenesis. Br J Cancer 83: 1033-1038.
121. Duffey DC, Chen Z, Dong G, Ondrey FG, Wolf JS, et al. (1999) Expression of a dominant-negative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 59: 3468-3474.
122. Chen S, Fribley A, Wang CY (2002) Potentiation of tumor necrosis factor-mediated apoptosis of oral squamous cell carcinoma cells by adenovirus-mediated gene transfer of NF-kappaB inhibitor. J Dent Res 81: 98-102.
123. Yamamoto S, Tomita Y, Hoshida Y, Takiguchi S, Fujiwara Y, et al. (2003) Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma. J Clin Oncol 21: 2537-2544.
124. Yamamoto S, Tomita Y, Nakamori S, Hoshida Y, Nagano H, et al. (2003) Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence. J Clin Oncol 21: 447-452.
125. Tsujimoto Y, Tomita Y, Hoshida Y, Kono T, Oka T, et al. (2004) Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer. Clin Cancer Res 10: 3007-3012.
126. Yamamoto S, Tomita Y, Hoshida Y, Iizuka N, Kidogami S, et al. (2004) Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma. Clin Cancer Res 10: 5558-5565.
127. Yamamoto S, Tomita Y, Hoshida Y, Iizuka N, Monden M, et al. (2004) Expression level of valosin-containing protein (p97) is correlated with progression and prognosis of non-small-cell lung carcinoma. Ann Surg Oncol 11: 697-704.
128. Yamamoto S, Tomita Y, Hoshida Y, Nagano H, Dono K, et al. (2004) Increased expression of valosin-containing protein (p97) is associated with lymph node metastasis and prognosis of pancreatic ductal adenocarcinoma. Ann Surg Oncol 11: 165-172.
129. Yamamoto S, Tomita Y, Hoshida Y, Sakon M, Kameyama M, et al. (2004) Expression of valosin-containing protein in colorectal carcinomas as a predictor for disease recurrence and prognosis. Clin Cancer Res 10: 651-657.
130. Yamamoto S, Tomita Y, Hoshida Y, Toyosawa S, Inohara H, et al. (2004) Expression level of valosin-containing protein (VCP) as a prognostic marker for gingival squamous cell carcinoma. Ann Oncol 15: 1432-1438.
131. Yamamoto S, Tomita Y, Uruno T, Hoshida Y, Qiu Y, et al. (2005) Increased expression of valosin-containing protein (p97) is correlated with disease recurrence in follicular thyroid cancer. Ann Surg Oncol 12: 925-934.
132. Zucchini C, Rocchi A, Manara MC, De Sanctis P, Capanni C, et al. (2008) Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int J Oncol 32: 17-31.
133. Frohlich KU, Fries HW, Rudiger M, Erdmann R, Botstein D, et al. (1991) Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J Cell Biol 114: 443-453.
134. Leon A, McKearin D (1999) Identification of TER94, an AAA ATPase protein, as a Bam-dependent component of the Drosophila fusome. Mol Biol Cell 10: 3825-3834.
135. Muller JM, Deinhardt K, Rosewell I, Warren G, Shima DT (2007) Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun 354: 459-465.
136. Wang Q, Li L, Ye Y (2008) Inhibition of p97-dependent protein degradation by Eeyarestatin I. J Biol Chem 283: 7445-7454.
137. Wang Q, Shinkre BA, Lee JG, Weniger MA, Liu Y, et al. (2010) The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS One 5: e15479.
138. Bursavich MG, Parker DP, Willardsen JA, Gao ZH, Davis T, et al. (2010) 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97). Bioorg Med Chem Lett 20: 1677-1679.
139. Chou TF, Deshaies RJ (2011) Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J Biol Chem 286: 16546-16554.
140. Chou TF, Brown SJ, Minond D, Nordin BE, Li K, et al. (2011) Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci U S A 108: 4834-4839.
141. Cubedo E, Cordeu L, Bandres E, Rebollo A, Malumbres R, et al. (2006) New symmetrical quinazoline derivatives selectively induce apoptosis in human cancer cells. Cancer Biol Ther 5: 850-859.
142. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5: 417-421.
143. Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2: 533-543.
144. Correa P (1985) Clinical implications of recent developments in gastric cancer pathology and epidemiology. Semin Oncol 12: 2-10.
145. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14: 433-439.
146. Deans DA, Wigmore SJ, Gilmour H, Paterson-Brown S, Ross JA, et al. (2006) Elevated tumour interleukin-1beta is associated with systemic inflammation: A marker of reduced survival in gastro-oesophageal cancer. Br J Cancer 95: 1568-1575.
147. Moss SF (1998) Review article: Cellular markers in the gastric precancerous process. Aliment Pharmacol Ther 12 Suppl 1: 91-109.
148. Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19: 2181-2192.
149. Acharya U, Jacobs R, Peters JM, Watson N, Farquhar MG, et al. (1995) The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell 82: 895-904.
150. Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure--diverse function. Genes Cells 6: 575-597.
151. Beaudoin S, Goggin K, Bissonnette C, Grenier C, Roucou X (2008) Aggresomes do not represent a general cellular response to protein misfolding in mammalian cells. BMC Cell Biol 9: 59.
152. Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, et al. (2008) Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 68: 2557-2560.
153. Valle CW, Min T, Bodas M, Mazur S, Begum S, et al. (2011) Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma. PLoS One 6: e29073.
154. Yamamoto S, Tomita Y, Hoshida Y, Iizuka N, Monden M, et al. (2004) Expression level of valosin-containing protein (p97) is correlated with progression and prognosis of non-small-cell lung carcinoma. Ann Surg Oncol 11: 697-704.
155. Hermanek P, and Sobin, L. H. (1992) TNM classification of malignant tumours. In: 4th ed nr, editor. Berlin: Springer. pp. 45-55.
156. Sheu BS, Yang HB, Wu JJ, Huang AH, Lin XZ, et al. (1999) Development of Helicobacter pylori infection model in BALB/c mice with domestic cagA-positive and -negative strains in Taiwan. Dig Dis Sci 44: 868-875.
157. Yang JC, Shun CT, Chien CT, Wang TH (2008) Effective prevention and treatment of Helicobacter pylori infection using a combination of catechins and sialic acid in AGS cells and BALB/c mice. J Nutr 138: 2084-2090.
158. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 20: 1161-1181.
159. Wang JT, Lin JT, Sheu JC, Yang JC, Chen DS, et al. (1993) Detection of Helicobacter pylori in gastric biopsy tissue by polymerase chain reaction. Eur J Clin Microbiol Infect Dis 12: 367-371.
160. Yan F, Cao H, Chaturvedi R, Krishna U, Hobbs SS, et al. (2009) Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 136: 1297-1307, e1291-1293.
161. Gonda MA, Aaronson SA, Ellmore N, Zeve VH, Nagashima K (1976) Ultrastructural studies of surface features of human normal and tumor cells in tissue culture by scanning and transmission electron microscopy. J Natl Cancer Inst 56: 245-263.
162. Tabassam FH, Graham DY, Yamaoka Y (2009) Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cell Microbiol 11: 70-82.
163. Wei J, Nagy TA, Vilgelm A, Zaika E, Ogden SR, et al. (2010) Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology 139: 1333-1343.
164. Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, et al. (1999) Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11: 709-719.
165. Wojcik C, Schroeter D, Wilk S, Lamprecht J, Paweletz N (1996) Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur J Cell Biol 71: 311-318.
166. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143: 1883-1898.
167. Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, et al. (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145: 481-490.
168. Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, et al. (2007) Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6: 114-124.
169. Katoh M (2007) Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther 6: 832-839.
170. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 9: 2723-2735.
171. Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, et al. (2000) H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 119: 97-108.
172. Beinke S, Ley SC (2004) Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 382:
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62786-
dc.description.abstract過去的研究結果已顯示valosin-containing protein (VCP) 和感染幽門螺旋桿菌所引起的胃癌有關。然而VCP與胃癌發展之間的關係尚未完全研究清楚,因此本論文的研究目的,是希望利用消去(subtractive )蛋白體學技術,先讓AGS 胃腺癌細胞中大量表達VCP蛋白質,接著利用免疫沉澱(immunoprecipitation)方法,得到細胞中與VCP交互作用的分子,然後進一步探討VCP其調控及胃癌發展的機制。首先,我們將免疫沉澱下來的VCP蛋白質複合體(complex)產物,經過一維電泳的展開,接著再利用液相層析偶合串聯式質譜儀(LC-MS/MS)進行分析,結果得到288個和VCP交互作用的蛋白,然後再藉由Ingenuity Pathway Analysis (IPA)軟體分析之後,得到18個和VCP交互作用的蛋白,主要都參與Akt訊息傳遞網路的的調控,於是我們利用免疫沉澱的方式,證明VCP和Akt之間的交互作用,除此之外,我們也觀察到當AGS細胞感染幽門螺旋桿菌時,會活化Akt激酶,進而促使VCP的磷酸化,同時我們也進一步分析發現, VCP的磷酸化會促使蛋白的泛素化和聚集體(aggresome)的形成,然後使一些細胞凋亡的蛋白的降解(degradation),進而促進細胞生存,藉由這些結果,我們瞭解到VCP的磷酸化在幽門螺旋桿菌感染胃上皮細胞機制中扮演重要的角色,同時讓我們將近一步釐清VCP的磷酸化在細胞中所參予的功能,也提供一個關於幽門螺旋桿菌感染胃上皮細胞新的致病機制。zh_TW
dc.description.abstractPrevious studies have demonstrated that valosin-containing protein (VCP) is associated with H. pylori-induced gastric carcinogenesis. By identifying the interactome of VCP overexpressed in AGS cells using a subtractive proteomics approach, we aimed to characterize the cellular responses mediated by VCP and its functional roles in H. pylori-associated gastric cancer. VCP immunoprecipitations followed by proteomic analysis identified 288 putative interacting proteins, 18 VCP-binding proteins belonged to the PI3K/Akt signaling pathway. H. pylori infection increased the interaction between Akt and VCP, Akt-dependent phosphorylation of VCP, levels of ubiquitinated proteins, and aggresome formation in AGS cells. Furthermore, phosphorylated VCP co-localized with the aggresome, bound ubiquitinated proteins, and increased the degradation of cellular regulators to protect H. pylori-infected AGS cells from apoptosis. Our study demonstrates that VCP phosphorylation following H. pylori infection promotes both gastric epithelial cell survival, mediated by the PI3K/Akt pathway, and the degradation of cellular regulators. These findings provide novel insights into the mechanisms of H. pylori infection induced gastric carcinogenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:10:23Z (GMT). No. of bitstreams: 1
ntu-102-D93442005-1.pdf: 3736889 bytes, checksum: a849aa4303726fb7e5705ceb41d7d766 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Abbreviations v
Table of Contents viii
Chapter I – Overview and Rationale 1
1.1 Overview of gastric cancer 2
1.2 The relationship between Helicobacter pylori and gastric cancer 5
1.3 Role of Helicobacter pylori in gastric cancer 6
1.4 Valosin-containing protein (VCP) as a gastric cancer crucial biomarker 8
1.5 Structure and biological functions of VCP 10
1.6 VCP is highly modulated by phosphorylation 14
1.7 VCP and cancer 16
1.8 VCP inhibitors for anti-cancer therapy 17
Specific aim 19
Chapter II - VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells 21
2.1 Introduction 22
2.2 Materials and Methods 25
2.3 Results 40
2.4 Discussion 50
Chapter III – Conclusion and perspectives 58
Conclusion and perspectives 59
List of Figures 62
Figure 1. Expression level of VCP in H. pylori infected gastric cancer tissue. 62
Figure 2. H. pylori infection induced high expression of VCP in mouse gastric tissues. 64
Figure 3. The VCP interactome. 65
Figure 4. Bioinformatic ontology of interacting proteins of VCP co-immunoprecipitates. 66
Figure 5. Ingenuity Pathway Analysis (IPA) prediction and analysis of signal transduction networks for the 288 proteins in the VCP interactome in AGS cells. 68
Figure 6. Increased interaction between VCP and Akt in AGS cells caused by H. pylori infection. 69
Figure 7. Scansite software prediction VCP phosphorylation sites 70
Figure 8. Analysis of VCP phosphorylation sites in H. pylori-infected AGS cells. 71
Figure 9. Akt and VCP involved in against apoptosis of AGS cells infected with H. pylori. 72
Figure 10. Akt activity is involved in VCP phosphorylation-induced protection against apoptosis of AGS cells infected with H. pylori. 73
Figure 11. Tri-mut VCP induced apoptosis of AGS cells infected with H. pylori. 74
Figure 12. Akt activity is involved in VCP phosphorylation-induced proliferation and cell division of AGS cells infected with H. pylori. 75
Figure 13. H. pylori induces aggresome formation and around the nucleus through VCP phosphorylation during infection of AGS cells. 76
Figure 14. H. pylori induces aggresome formation and polyubiquitinated proteins through VCP phosphorylation during infection of AGS cells. 77
Figure 15. Aggresome formation and polyubiquitinated proteins were reduced in Tri-mut VCP-Flag-transfected AGS cells infected with H. pylori. 78
Figure 16. Co-regulation analysis of cell survival in H. pylori-infected AGS cells. 79
Figure 17. Immunoprecipitation and immunoblotting analysis of VCP interaction partners in H. pylori-infected AGS cells. 80
Figure 18. NF-κB activation caused by H. pylori infection involves phosphorylation of VCP. 81
Figure 19. Cellular regulator degradation caused by H. pylori infection involves phosphorylation of VCP. 82
Figure 20. H. pylori stimulated polyubiquitination of Cellular regulator. 83
Figure 21. H. pylori induced cellular regulators colocalized with ubiquitinated proteins during infection of AGS cells. 84
Figure 22. Protein degradation was inhibited in AGS ells overexpressing Tri-mut VCP-Flag 85
Figure 23. Schematic model of the hypothetical mechanism for VCP anti-apoptotic pathways in gastric epithelial cells infected with H. pylori. 86
List of Tables 87
Table 1. Primer sequences for VCP and site-specific VCP mutant constructs 87
Table 2. List of 288 VCP interaction proteins immunoprecipitated with anti-Flag M2 affinity gel from H. pylori infected AGS cells. 88
Table 3. List of biological functions of VCP-interacting proteins from Gene Ontology. 95
Table 4. Top 10 list of canonical pathways activated by VCP-interacting proteins from Ingenuity Pathway Analysis. 96
Table 5. Top high-level functions identified by Ingenuity global function analysis of VCP-interacting proteins in H. pylori-infected AGS cells. 97
Reference 98
List of instrument 109
dc.language.isozh-TW
dc.subject細胞凋亡zh_TW
dc.subject訊息傳導zh_TW
dc.subject纈酪胺酸蛋白質zh_TW
dc.subject交互作用體zh_TW
dc.subject免疫沉澱zh_TW
dc.subject幽門螺旋桿菌zh_TW
dc.subject聚集體zh_TW
dc.subjectPI3K/Akt pathwayen
dc.subjectapoptosisen
dc.subjectHelicobacter pylorien
dc.subjectvalosin-containing proteinen
dc.subjectaggresomeen
dc.title利用蛋白體學方法鑑定胃上皮細胞中磷酸化缬絡胺酸蛋白質的交互作用分子及其防止幽門螺旋桿菌誘發細胞凋亡之特性zh_TW
dc.titleProteomics approach to identify and characterize VCP phosphorylation-dependent interaction partners for prevention Helicobacter pylori-induced apoptosis of gastric epithelial cellsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee蔡孟勳,林中梧,楊智欽,黃麗華
dc.subject.keyword聚集體,細胞凋亡,幽門螺旋桿菌,纈酪胺酸蛋白質,免疫沉澱,交互作用體,訊息傳導,zh_TW
dc.subject.keywordaggresome,apoptosis,Helicobacter pylori,PI3K/Akt pathway,valosin-containing protein,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2013-02-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved