請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Ming-Ju Chou | en |
| dc.contributor.author | 周珉如 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:09:46Z | - |
| dc.date.available | 2016-04-25 | |
| dc.date.copyright | 2013-04-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-03-20 | |
| dc.identifier.citation | [1] Moghimi SM, Hunter AC, Murray JC. Long-Circulating and Target-Specific Nanoparticles: Theory to Practice. PHARMACOLOGICAL REVIEWS. 2001;53::283–318.
[2] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews. 2012;64:61-71. [3] Kim BYS, Rutka JT, Chan WCW. Nanomedicine. The new england journal o f medicine. 2010;363:2434-43. [4] Hobbs SK, L.Monsky W, FY, Roberts G, LG, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95:4607-12. [5] Davis SS. Biomedical applications of nanotechnology - implications for drug targeting and gene therapy. TIBTECH. 1997;15. [6] Peer D, Karp JM, Hong S, Margalit R, Farokhzad OC, Langer R. Nanocarriers as an emerging platform for cancer therapy. nature nanotechnology. 2007;2:751-60. [7] Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorganic & medicinal chemistry. 2009;17:2950-62. [8] Alexis F, Pridgen EM, Langer R, Farokhzad OC. Nanoparticle technologies for cancer therapy. Handbook of experimental pharmacology. 2010:55-86. [9] Choksakulnimitr S, Masuda S, Tokuda H, Takakura Y, Hashida M. In vitro cytotoxicity of macromolecules in different cell culture systems. Journal of Controlled Release 1995;34:233-41. [10] Hans ML, Lowman AM. B iodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science. 2002;6:319–27. [11] Allen TM, Hansen CB, Menezes DELd. Pharmacokinetics of long-circulating liposomes. Advanced drug delivery reviews. 1995;16:267-84. [12] Ogihar-Uumda I, Sasaki T, Nishigori H. Development of a liposome-encapsulated radionuclide with preferential tumor accumulation - the choice of radionuclide and chelating ligand. Nucl Med Biol. 1992;19:753-7. [13] Lim HJ, Parr MJ, Masin D, McIntosh NL, Madden TD, Zhang G, et al. Kupffer Cells Do Not Play a Role in Governing the Efficacy of Liposomal Mitoxantrone Used to Treat a Tumor Model Designed to Assess Drug Delivery to Liver. Clinical Cancer Research. 2000;6:4449-60. [14] Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA. 1991;88:11460-4. [15] Choucair A, Eisenberg A. Control of amphiphilic block copolymer morphologies using solution conditions. The European physical journal E, Soft matter. 2003;10:37-44. [16] Choucair A, Eisenberg A. Interfacial Solubilization of Model Amphiphilic Molecules in Block Copolymer Micelles. J AM CHEM SOC. 2003;125:11993-2000. [17] Yu Y, Zhang L, Eisenberg A. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules. 1998;31:1144-54. [18] Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. Journal qf Controlled Release. 1993;24:119-32. [19] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Advanced drug delivery reviews. 2012;64:37-48. [20] Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:6039-44. [21] Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MıJ. Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release. 2001;73:255–67. [22] Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics. 2000;194:91-102. [23] Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. Journal of Nanoparticle Research. 2006;9:885-900. [24] Lee CH, Singla A, Lee Y. Biomedical applications of collagen. International Journal of Pharmaceutics. 2001;221:1-22. [25] Coester CJ, Langer K, Briesen HV, Kreuter J. Gelatin nanoparticle s by two step desolvation - a new preparation method , surface modification s and cell uptake. J MICROENCAPSULATION. 2000;17:187-93. [26] Jain RK. The next frontier of molecular medicine: Delivery of therapeutics. Nature Medicine 1998;4:655-7. [27] Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles. International Journal of Nanomedicine. 2007;2:595-607. [28] Ruponen M. Extracellular and intracellular barriers in non-viral gene delivery. Journal of Controlled Release. 2003;93:213-7. [29] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews. 2008;60:1615-26. [30] Medina-Kauwe L, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Therapy. 2005;12:1734–51. [31] TE H, AJ. F. Proteoglycans: many forms and many functions. FASEB J 1992;6:861-70. [32] Shen W-C, Wan J, Ekrami H. Means to Enhance Penetration: Enhancement of polypeptide and protein absorption by macromolecular carriers via endocytosis and transcytosis. Advanced Drug Deliver)' Reviews. 1992;8:93-113. [33] Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7:1322-37. [34] Little SR, Kohane DS. Polymers for intracellular delivery of nucleic acids. Journal of Materials Chemistry. 2008;18:832-41. [35] Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. Journal of controlled release : official journal of the Controlled Release Society. 2011;151:220-8. [36] Tian W-d, Ma Y-q. Insights into the endosomal escape mechanism via investigation of dendrimer–membrane interactions. Soft Matter. 2012;8:6378. [37] Gelatin Handbook. Gelatin Manufacturers Institute of America. 2012. [38] Gaihre B, Aryal S, Barakat NAM, Kim HY. Gelatin stabilized iron oxide nanoparticles as a hree dimensional template for the hydroxyapatite crystal nucleation and growth. Materials Science and Engineering: C. 2008;28:1297-303. [39] Gilsenan PM, Ross-Murphy SB. Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids. 2000;14:191–5. [40] Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, et al. Cationic polymers and their therapeutic potential. Chemical Society reviews. 2012;41:7147-94. [41] Jamilah B, Harvinder KG. Properties of gelatins from skins of fish—black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry. 2002;77:81-4. [42] Raja Mohd Hafidz RN, Yaakob CM, Amin I, Noorfaizan A. Chemical and functional properties of bovine and porcine skin gelatin. International Food Research Journal. 2011;18:813-7. [43] O B, Lezoualc'h F, Zanta MA MM, Scherman D, Demeneix B, JP. B. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297-301. [44] Peter R. Berthold, Takehiko Shiraishi, Nielsen PE. Cellular Delivery and Antisense Effects of Peptide Nucleic Acid Conjugated to Polyethyleneimine via Disulfide Linkers. Bioconjugate Chem. 2010;21:1933–8. [45] Kafil V, Omidi Y. Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431 Cells. BioImpacts. 2011;1:23-30. [46] Dagmar Fischer, Harpe Av, Klaus Kunath, Holger Petersen, Youxin Li, Kissel T. Copolymers of Ethylene Imine and N-(2-Hydroxyethyl)-ethylene Imine as Tools To Study Effects of Polymer Structure on Physicochemical and Biological Properties of DNA Complexes. Bioconjugate Chem. 2002;13:1124-33. [47] Ann R. Klemm, Young D, Lloyd JB. Effects of Polyethyleneimine on Endocytosis and Lysosome Stability. Biochemical Pharmacology. 1998;56:41-6. [48] Dagmar Fischer, Youxin Li, Barbara Ahlemeyer, Josef Krieglstein, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability andhemolysis. Biomaterials. 2003;24:1121–31. [49] Chen J, Hessler JA, Putchakayala K, Panama BK, Khan DP, Hong S, et al. Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes. J Phys Chem B. 2009;113:11179–85. [50] Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, et al. Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells: Nanoscale Hole Formation and Enhanced Membrane Permeability. Bioconjugate Chem. 2006;17:728-34. [51] Mi F-L, Tan Y-C, Liang H-F, Sung H-W. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 2002;23:181-91. [52] Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnology. 1992;6: 257-72 [53] Qi L, Xu Z. In vivo antitumor activity of chitosan nanoparticles. Bioorganic & Medicinal Chemistry Letters. 2006;16:4243–5. [54] Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews. 2008;60:1650–62. [55] Mazia D, Schatten G, W. S. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. JOURNAL OF CELL BIOLOGY. 1975;66:198-200. [56] Ward CM. Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood. 2001;97:2221-9. [57] Dash P, Read M, Barrett L, Wolfert M, Seymour L. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Therapy. 1996;6:643–50. [58] Pouton CW, Lucas P, Thomas BJ, Uduehi AN, Milroy DA, Moss SH. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. Journal of Controlled Release. 1998;53:289–99. [59] Brown MD, tzlein AS, Brownlie A, Jack V, W. Wang LT, Gray AI, et al. Preliminary Characterization of Novel Amino Acid Based Polymeric Vesicles as Gene and Drug Delivery Agents. Bioconjugate Chem. 2000;11:880-91. [60] Baldwin SP, Saltzman WM. Materials for protein delivery in tissue engineering. Advanced drug delivery reviews. 1998;33:71–86. [61] Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv. 2005;2:29-42. [62] Solaro R, Chiellini F, Battisti A. Targeted Delivery of Protein Drugs by Nanocarriers. Materials. 2010;3:1928-80. [63] Rabkin R, Dahl DC. Renal Uptake and Disposal of Proteins and Peptides. In: Audus KL, Raub TJ, editors. Biological Barriers to Protein Delivery1993. p. 299-338 [64] Ciechanover A. Intracellular Protein Degradation: From a Vague Idea Thru the Lysosome and the Ubiquitin-Proteasome System and onto Human Diseases and Drug Targeting. Experimental Biology and Medicine. 2006;231:1197-211. [65] Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discovery Today: Technologies. 2008;5:e95-e103. [66] Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Reviews Molecular Cell Biology. 2005;6:79-87 [67] Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chemical Society reviews. 2011;40:3638-55. [68] Gombotz WR, Pettit DK. Biodegradable Polymers for Protein and Peptide Drug Delivery. Bioconjugate Chem. 1995;6:332-51. [69] Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Journal of controlled release : official journal of the Controlled Release Society. 2008;125:193-209. [70] A. Vila ASn, Tob´ıo M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. Journal of Controlled Release. 2002;78:15–24. [71] Li T, Shi XW, Du YM, Tang YF. Quaternized chitosan/alginate nanoparticles for protein delivery. Journal of biomedical materials research Part A. 2007;83:383-90. [72] Won YW, Kim YH. Recombinant human gelatin nanoparticles as a protein drug carrier. Journal of controlled release : official journal of the Controlled Release Society. 2008;127:154-61. [73] CALVO P, PEZ CRAN-L, VILA-JATO JL, ALONSO MJ. Novel Hydrophilic Chitosan–Polyethylene Oxide Nanoparticles as Protein Carriers. Journal of Applied Polymer Science. 1997;63:125–32. [74] Li Y-P, Pei Y-Y, Zhang X-Y, Gu Z-H, Zhou Z-H, Yuan W-F, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. Journal of Controlled Release. 2001;71:203–11. [75] Grenha A, Seijo B, Remunan-Lopez C. Microencapsulated chitosan nanoparticles for lung protein delivery. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2005;25:427-37. [76] Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Colloids and surfaces B, Biointerfaces. 2007;59:24-34. [77] Cohen S, Coue G, Beno D, Korenstein R, Engbersen JF. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells. Biomaterials. 2012;33:614-23. [78] Hwa Kim S, Hoon Jeong J, Joe CO, Gwan Park T. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate. Journal of controlled release : official journal of the Controlled Release Society. 2005;103:625-34. [79] Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. NATURE NANOTECHNOLOGY. 2010;5:48-53. [80] Zhao M, Biswas A, Hu B, Joo KI, Wang P, Gu Z, et al. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials. 2011;32:5223-30. [81] Spada G, Gavini E, Giunchedi P. Protein Delivery from Polymeric Nanoparticles. World Academy of Science, Engineering and Technology. 2011;52:245-9. [82] Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Advanced drug delivery reviews. 2008;60:757-67. [83] Chonn A, Cullis PR. Recent advances in liposomal drug-delivery systems. Current Opinion in Biotechnology. 1995;6:698-708. [84] Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. Journal of pharmaceutical sciences. 2010;99:2557-75. [85] Jorgensen L, Moeller EH, van de Weert M, Nielsen HM, Frokjaer S. Preparing and evaluating delivery systems for proteins. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2006;29:174-82. [86] Sułkowski WW, Pentak D, Nowak K, Sułkowska A. The influence of temperature, cholesterol content and pH on liposome stability. Journal of Molecular Structure. 2005:737–47. [87] Allen TM, Cleland LG. SERUM-INDUCED LEAKAGE OF LIPOSOME CONTENTS. Biochimica et Biophysica Acta. 1980;597:418--26. [88] Reulen SWA, Brusselaars WWT, Langereis S, Mulder WJM, Breurken M, Merkx M. Protein-Liposome Conjugates Using Cysteine-Lipids And Native Chemical Ligation. Bioconjugate Chem. 2007:590-6. [89] Müller RH, Lucks JS. Arzneistoffträger aus festen Lipidteilchen—feste Lipid Nanosphären (SLN). European Patent No. 0605497 (1996). [90] Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution. US Patent 5 250 236 (1993).. [91] Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced drug delivery reviews. 2007;59:478-90. [92] Rawat M, Singh D, Saraf S. Lipid Carriers: A Versatile Delivery Vehicle for Proteins and Peptides. YAKUGAKU ZASSHI. 2008;128:269―80. [93] S. Del Vecchio A. Zannetti, R. Fonti , L. Pace, M. Salvatore. Nuclear imaging in cancer theranostics. Q J NUCL MED MOL IMAGING. 2007;51:152-63. [94] Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Advanced drug delivery reviews. 2010;62:1064-79. [95] Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine. 2008;3:137–40. [96] Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Advanced drug delivery reviews. 2010;62:1052-63. [97] RIZIA BARDHAN SL, AMIT JOSHI, NAOMI J. HALA. Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. ACCOUNTS OF CHEMICAL RESEARCH. 2011;44:936-46. [98] Huang HY, Kuo WT, Chou MJ, Huang YY. Co-delivery of anti-vascular endothelial growth factor siRNA and doxorubicin by multifunctional polymeric micelle for tumor growth suppression. Journal of biomedical materials research Part A. 2011;97:330-8. [99] Maeda H, Greish K, Fang J. The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century. Adv Polym Sci. 2006;193:103-21. [100] W.T. Godbey KKW, Antonios G. Mikos. Poly(ethylenimine) and its role in gene delivery. Journal of Controlled Release. 1999;60:149-60. [101] Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2005;19:311-30. [102] Vega-Villa KR, Takemoto JK, Yanez JA, Remsberg CM, Forrest ML, Davies NM. Clinical toxicities of nanocarrier systems. Advanced drug delivery reviews. 2008;60:929-38. [103] Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12-21. [104] Chen J, Jessica A. Hessler, Putchakayala K, Panama BK, Khan DP, Hong S, et al. Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes. J Phys Chem. 2009;113:11179–85. [105] Kuo W-T, Huang H-Y, Chou M-J, Wu M-C, Huang Y-Y. Surface Modification of Gelatin Nanoparticles with Polyethylenimine as Gene Vector. Journal of Nanomaterials. 2011;2011:1-5. [106] Estey T, Kang J, Schwendeman SP, Carpenter JF. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. Journal of pharmaceutical sciences. 2006;95:1626-39. [107] W S, CF J, KD B, WR F, JD L, JG C, et al. Localization of neuroendocrine tumours with [111In]DTPAoctreotide scintigraphy (Octreoscan): a comparative study with CT and MR imaging. Q J Med. 1998;91:295–301. [108] Hwang E-H, Taki J, Shuke N, Nakajima K, Kinuya S, Konishi S, et al. Preoperative Assessment of Residual Hepatic Functional Reserve Using 99mTc-DTPA-Galactosyl-Human Serum Albumin Dynamic SPECT. THE JOURNALOF NUCLEARMEDICINE. 1999;40:1644-51. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62765 | - |
| dc.description.abstract | 研究指出許多疾病起因於體內特定蛋白質的缺乏或表現異常,導致蛋白質的變異進而影響細胞訊息傳遞及調控的功能。近年來有許多研究致力於以基因轉殖技術治療蛋白質表現變異所產生的疾病,但基因治療的風險及成效至今仍無法預測,因此利用蛋白質藥物直接對細胞進行調控以達治療目的之研究仍有很大的發展潛力。由於蛋白質容易被生理環境因子破壞,故在臨床上的應用仍有許多限制。為克服蛋白質藥物傳輸之限制,設計一奈米載體做為蛋白質傳輸之媒介被認為可增進蛋白質之細胞攝入效率及保護蛋白質免於環境因子的破壞。除了增進蛋白質傳輸效率,如何使蛋白質藥物在攝入細胞後能避免因內質體或溶酶體酸化而分解為設計蛋白質載體之重要考慮因素。聚乙烯亞胺(polyethyleneimaine, PEI)具有對pH變化時的緩衝能力(pH-buffering),可保護蛋白質藥物不因酸化環境而分解,並可促使內質體及溶酶體的破裂而使蛋白質藥物釋放至細胞質中,但PEI存在細胞毒性,且其毒性程度隨著分子量增加而提升,因此在設計PEI相關之奈米載體時,選擇低分子量之PEI以降低毒性的同時是否能提高蛋白質承載,及傳輸效率之議題值得被深入研究。
本研究主要是發展同時具有蛋白質藥物傳輸以及醫學影像探針特性之多功能奈米載體,利用表面修飾聚乙烯亞胺使奈米載體具有帶正電之特性,並研究此奈米載體於蛋白質傳輸之成效。以去溶解法(desolvation method)製備明膠奈米粒子,並以EDC做為架橋劑將低分子量之正電荷支鏈型聚乙烯亞胺修飾於明膠奈米粒子表面。為使明膠奈米粒子具備細胞示蹤之功能,將紅色螢光探針Rhodamine B isothiocyanate(RITC)接合於明膠奈米粒子中,並將螯合劑DTPA接枝於明膠—聚乙烯亞胺奈米粒子之表面,螯合釓離子(Gadolinium, Gd)作為磁振造影T1-weighted影像之對比劑。 實驗結果顯示本研究所製備之正電荷明膠—聚乙烯亞胺奈米粒子之尺寸約150nm,於中性環境下之表面電位約為60mV。在穿透式電子顯微鏡(TEM)及原子力顯微鏡(AFM)的影像可觀察到奈米粒子之型態為球型,且尺寸大小符合動態光散射法所測得之尺寸。細胞毒性之研究結果顯示細胞與明膠—聚乙烯亞胺奈米粒子共同培養後之細胞存活率與控制組無顯著差異,證明本研究所製備之奈米載體具有低細胞毒性之特質。經由流式細胞儀分析結果及螢光顯微鏡影像可驗證帶正電荷之明膠—聚乙烯亞胺奈米粒子相較於未修飾之明膠奈米粒子具有更有效率的細胞攝入率。此外,研究結果顯示明膠—聚乙烯亞胺奈米粒子具有良好的蛋白質承載能力,相較於游離之蛋白質,其良好細胞及組織間之傳輸情形藉由流式細胞儀分析及組織切片螢光影像得到驗證。 另一方面,將本研究所發展之奈米載體作為多樣化影像對比功能之應用,可從螢光顯微影像及共軛焦雷射顯微影像證明其於細胞間之示蹤能力,可幫助追蹤奈米粒子於細胞間的分布以及蛋白質傳輸及釋放情形。在磁振影像中也可證明以DTPA螯合釓離子之明膠—聚乙烯亞胺奈米粒子具備T1-weighted之對比能力。此外奈米粒子於腫瘤組織之間的累積情形也可藉由磁振造影觀察,以上結果可說明本研究所發展之正電性之多功能明膠奈米粒子具有做為醫學影像探針之潛力。 以聚乙烯亞胺修飾明膠奈米粒子做為正電性之奈米載體傳輸系統在蛋白質藥物傳輸及診斷用影像探針之應用皆顯示了相當程度的優勢,其中粒子表面之帶正電特性不但具有蛋白質藥物承載能力,且能促使承載蛋白質之奈米粒子進入細胞並有效地從內質體內釋放,避免蛋白質被分解破壞,同時此奈米粒子顯示低細胞毒性及影像示蹤之特性,有助於診斷性治療功能方面應用之發展。 | zh_TW |
| dc.description.abstract | It has been reported that the absence of specific protein or the disorder of protein expression which induce the malfunction of signal transduction or regulation in cells may cause various clinical syndromes. Although gene therapy is the strategy for the cure of diseases by transferring genetic information into the targeting cells to regulate the subsequent protein expressions, so far the risk and effects of gene transfection method are not predictable. Hence the protein delivering into cells to directly regulate the mechanism of cells has also been investigated for the treatment of the corresponding diseases. Owing to the inefficiency of free protein transportation by the environmental degradation, the design of protein carrier is required to enhance the intracellular delivery efficiency of protein and prevent protein degradation by environmental factors.
Beside the effectient delivery of protein into specific cells, the prevention of protein degradation in endosomal or lysosomal digestion is the critical issue in nano-scale protein delivery system. The cationic polymer polyethyleneimine (PEI) has been demonstrated possessing high pH-buffering capacity, providing the protection to biomolecules from acidic degradation, and promoting the release from endosome or lysosome. Nevertheless, the cytotoxicity of PEI exists by the increasing molecular weight. There is an urgent need for developing PEI associated nanocarrier system for clinical application with improved protein delivery efficiency and less the cytotoxicity. In this study, the multi-functional nanoparticle-based protein delivery system was developed for the applications of both protein drug delivery and medical imaging probe. With the surface modification of lower molecular weight PEI, the formulated cationic nanoparticles were evaluated for the intracellular protein delivery. The gelatin nanoparticles were prepared by modified desolvation method and grafted with 1.8 kD branched PEI by cross-linking the amino group of PEI and the carboxyl group of gelatin with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). For the intracellular tracking application, the fluorescent molecules Rhodamine B isothiocyanate(RITC) were conjugated with gelatin nanoparticles (GR-PEI NPs) by EDC cross-linking. The chelator diethylene triamine pentaacetic acid (DTPA) was conjugated on the surface of gelatin-PEI nanoparticles for chelating gadolinium (Gd), the MRI T1-weighted imaging contrast agent. The average diameter of formulated RITC labeled gelatin-PEI nanoparticles was near 150nm, and zeta potential was about +60mV in neutral condition. The TEM and AFM images showed the spherical morphology of formulated nanoparticles and indicated nano-scale size correlated to the hydrodynamic size measurement. The GR-PEI NPs showed highly stability against the variation of temperature and pH value, and there was no significant variation between the cell viability of control cells and GR-PEI NP treated cells, indicating the low cytotoxicity of GR-PEI NPs. The data of flow cytometry and fluorescent microscopic images revealed that the cellular uptake of GR-PEI NPs was more efficient than that of GR NPs in several types of cells, suggesting the cell binding ability of cationic nanoparticles. Moreover, the outstanding protein loading capacity of GR-PEI NPs was obtained compared with negatively charged GR NPs. The intracellular and intra-tumor protein delivery efficiency of GR-PEI NPs was demonstrated by flow cytometry and fluorescent images of histological sections, indicating the effect protein transportation ability of GR-PEI NPs. For the multi-modalities of imaging application, the images from fluorescent microscope and confocal laser microscope showed the distribution of nanoparticles and the release profile of proteins, suggesting the intracellular tracking ability of GR-PEI NPs. The MRI phantom image demonstrated the T1-weighted contrast ability of GR-PEI NPs. The accumulation of Gd conjugated GR-PEI NPs in solid tumor was also evaluated by the MRI T1-weighted images. The above results indicate the function of image probe has been achieved. In summary, the cationic nanocarrier system which provides advantages for multifunctional tasks, including delivery of protein drugs and imaging probe for diagnostic applications, has been established by designing the gelatin nanoparticles with surface modification of polycationic PEI followed the conjugation of imaging agents. The characteristics of low cytotoxicity, outstanding protein loading ability, high efficiency of intracellular protein delivery, and imaging tracing ability demonstrate that the formulation designed in this study is a promising multifunctional vehicle for the theranostic applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:09:46Z (GMT). No. of bitstreams: 1 ntu-102-F95548060-1.pdf: 6617736 bytes, checksum: 98eb08b4f9ae83ddc53d2851eeee23fa (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要.............. ....................I
ABSTRACT III Table of Contents III List of Figures X List of Tables XIII CHEPTER 1 INTRODUCTION 1 1.1 Nanoparticle-based carrier system 1 1.1.1 Polymeric nanoparticles 4 1.1.2 Liposomes 5 1.1.3 Polymeric Micelles 6 1.1.4 Nanoparticles synthesized by natural biodegradable macromolecules 7 1.2 Intracellular Trafficking of Nanocarriers 9 1.2.1 Cell binding 9 1.2.2 Cellular uptake 10 1.2.3 Endosomal escape 12 1.3 Gelatin 15 1.4 Cationic polymers 18 1.4.1 Polyethyleneimine (PEI) 18 1.4.2 Chitosan 20 1.4.3 Poly(L-Lysine) (PLL) 21 1.5 Protein delivery 23 1.5.1 Challenges of intracellular protein delivery 23 1.5.2 Protein delivery by nanocarrier system 26 1.5.3 Formulations of nano-scale protein carrier system 28 1.6 Theranostic nanomedicine 35 1.7 Research aim 38 CHEPTER 2 MATERIALS AND METHODS 41 2.1 Materials 41 2.2 Synthesis of gelatin nanoparticles (GNPs) 42 2.3 Preparation of GNPs labeled optical-imaging agent(GR-NPs) 43 2.4 Cationic surface modification of GR-NPs by polyethylenimine (GR-PEI NPs) 44 2.5 Characterization of GR NPs and GR-PEI NPs 45 2.5.1 Particle size and zeta potential 45 2.5.2 Transmission electron microscopy (TEM) 45 2.5.3 Atomic force microscopy (AFM) 45 2.5.4 Amino group quantification 46 2.6 Stability of NPs in different condition 47 2.6.1 Buffer stability of GR NPs and GR-PEI NPs 47 2.6.2 Temperature stability of GR NPs and GR-PEI NPs 47 2.6.3 pH stability of GR NPs and GR-PEI NPs 47 2.7 Cytotoxicity analysis 48 2.8 Conjugation of diethylene triamine pentaacetic acid (DTPA) on GR-PEI NPs (GR-PEI-DTPA-NPs) 48 2.9 Determination of DTPA conjugated on GR-PEI NPs 49 2.9.1 Fourier transform infrared spectroscopy (FTIR) 49 2.9.2 Evaluation of amine loss 50 2.10 Preparation of GR-PEI-DTPA NPs with chelation of gadolinium (Gd3+) 50 2.10.1 Chelation of gadolinium (Gd3+) 50 2.10.2 Determination of the encapsulation efficiency of Gd3+ on NPs 50 2.11 Evaluation of in vitro cellular uptake 51 2.11.1 Cell modality 51 2.11.2 Cellular uptake analysis by flow cytometry 51 2.11.3 Fluorescent microscopic imaging 52 2.12 Protein binding ability of GR NPs and GR-PEI NPs 52 2.12.1 Analysis of protein binding efficiency 53 2.12.2 Characterization of GR NPs and GR-PEI NPs after binding protein 53 2.13 Intracellular protein delivery of GR-PEI NPs 53 2.13.1 Flow cytometry 54 2.13.2 Fluorescent microscopic imaging 54 2.13.3 Confocal microscopic images 55 2.14 MRI phantom imaging 55 2.15 Establishment of tumor-bearing animal modal 56 2.16 In vivo tumor accumulation of GR-PEI NPs 57 2.16.1 MRI T1-weighted imaging 57 2.16.2 Fluorescent imaging 57 2.17 In vivo protein delivering ability of GR-PEI NPs 58 CHAPTER 3 RESULTS 59 3.1 Characterization of GNPs and GNPs with surface modification 59 3.1.1 Physical characteristics 59 3.1.1.1 Average hydrodynamic size and zeta potential..........................................................58 3.1.1.2 Morphological observation by TEM and AFM images.............................................59 3.1.2 Amino group content quantification 61 3.2 Stability of GNPs and GNPs with surface modification 62 3.2.1 Buffer stability of GR NPs and GR-PEI NPs 62 3.2.2 Temperature stability of GR NPs and GR-PEI NPs 62 3.2.3 pH stability of GR NPs and GR-PEI NPs 63 3.3 Determination of DTPA conjugated on GR-PEI NPs 64 3.3.1 The DTPA binding efficiency 64 3.2.2 FTIR 65 3.3.3 Characterization of GR-PEI-DTPA NPs 65 3.4 Cytotoxicity analysis 67 3.5 Protein binding ability of GR NPs and GR-PEI NPs 68 3.5.1 Protein binding efficiency 68 3.5.2 Characterization of GR NPs and GR-PEI NPs after binding protein 69 3.6 Cellular uptake of GR NPs and GR-PEI NPs 70 3.6.1 Assessment of cellular uptake by 3T3 fibroblast cells 70 3.6.2 Assessment of cellular uptake by Huh7 hepatocarcinoma cells 71 3.6.3 Assessment of cellular uptake by C26 colon adenocarcinoma cells 72 3.7 Intracellular protein delivery of GR-PEI NPs 72 3.8 T1-weighted imaging of GR-PEI-Gd NPs 76 3.9 In vivo accumulation of GR-PEI NPs in tumor tissues 77 3.9.1 T1-weighted images of MRI 77 3.9.2 Fluorescent Microscopic images 77 3.10 In vivo protein delivery by GR-PEI NPs 78 CHEPTER 4 DISCUSSION 79 CHAPTER 5 CONCLUSION 89 REFERENCE 125 | |
| dc.language.iso | en | |
| dc.subject | 診斷性治療 | zh_TW |
| dc.subject | 多功能奈米粒子 | zh_TW |
| dc.subject | 蛋白質藥物傳輸 | zh_TW |
| dc.subject | 聚乙烯亞胺 | zh_TW |
| dc.subject | 磁振影像 | zh_TW |
| dc.subject | protein drug delivery | en |
| dc.subject | multifunctional nanoparticles | en |
| dc.subject | polyethyleneimane (PEI) | en |
| dc.subject | magnetic resonance imaging (MRI) | en |
| dc.subject | theranositc. | en |
| dc.title | 具影像對比功能正電荷奈米微粒作為蛋白質藥物載體之研究 | zh_TW |
| dc.title | Development of Multifunctional Cationic Nanoparticles as Protein Drug Delivery Carrier and Imaging Contrast Agent | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鍾次文,陳克紹,陳彥榮,許馨云 | |
| dc.subject.keyword | 蛋白質藥物傳輸,多功能奈米粒子,聚乙烯亞胺,磁振影像,診斷性治療, | zh_TW |
| dc.subject.keyword | protein drug delivery,multifunctional nanoparticles,polyethyleneimane (PEI),magnetic resonance imaging (MRI),theranositc., | en |
| dc.relation.page | 131 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-03-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
