Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62739
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳俊宏(Chun-Hong Chen)
dc.contributor.authorPo-Lin Chenen
dc.contributor.author陳柏霖zh_TW
dc.date.accessioned2021-06-16T16:09:02Z-
dc.date.available2022-07-15
dc.date.copyright2020-07-15
dc.date.issued2020
dc.date.submitted2020-06-03
dc.identifier.citationAbuaita, B.H., Schultz, T.L., and O'Riordan, M.X. (2018). Mitochondria-Derived Vesicles Deliver Antimicrobial Reactive Oxygen Species to Control Phagosome-Localized Staphylococcus aureus. Cell Host Microbe 24, 625-636 e625.
Altanbyek, V., Cha, S.J., Kang, G.U., Im, D.S., Lee, S., Kim, H.J., and Kim, K. (2016). Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 481, 259-264.
Alto, N.M., Soderling, J., and Scott, J.D. (2002). Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. The Journal of cell biology 158, 659-668.
Amaya, C., Fader, C.M., and Colombo, M.I. (2015). Autophagy and proteins involved in vesicular trafficking. FEBS letters 589, 3343-3353.
Amr, S., Heisey, C., Zhang, M., Xia, X.J., Shows, K.H., Ajlouni, K., Pandya, A., Satin, L.S., El-Shanti, H., and Shiang, R. (2007). A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. American journal of human genetics 81, 673-683.
Bakeeva, L.E., Chentsov Yu, S., and Skulachev, V.P. (1978). Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim Biophys Acta 501, 349-369.
Barrett, T.G., Bundey, S.E., and Macleod, A.F. (1995). Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346, 1458-1463.
Bauer, M.F., Hofmann, S., Neupert, W., and Brunner, M. (2000). Protein translocation into mitochondria: the role of TIM complexes. Trends in cell biology 10, 25-31.
Beregi, E., Regius, O., Huttl, T., and Gobl, Z. (1988). Age-related changes in the skeletal muscle cells. Z Gerontol 21, 83-86.
Bezawork-Geleta, A., Brodie, E.J., Dougan, D.A., and Truscott, K.N. (2015). LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 5, 17397.
Bhuin, T., and Roy, J.K. (2014). Rab proteins: the key regulators of intracellular vesicle transport. Experimental cell research 328, 1-19.
Bonifacino, J.S., and Glick, B.S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153-166.
Bonifacino, J.S., and Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nature reviews Molecular cell biology 4, 409-414.
Bossy-Wetzel, E., Barsoum, M.J., Godzik, A., Schwarzenbacher, R., and Lipton, S.A. (2003). Mitochondrial fission in apoptosis, neurodegeneration and aging. Current opinion in cell biology 15, 706-716.
Brandt, T., Mourier, A., Tain, L.S., Partridge, L., Larsson, N.G., and Kuhlbrandt, W. (2017). Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. Elife 6.
Bueno, M., Lai, Y.C., Romero, Y., Brands, J., St Croix, C.M., Kamga, C., Corey, C., Herazo-Maya, J.D., Sembrat, J., Lee, J.S., et al. (2015). PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 125, 521-538.
Bui, M., Gilady, S.Y., Fitzsimmons, R.E., Benson, M.D., Lynes, E.M., Gesson, K., Alto, N.M., Strack, S., Scott, J.D., and Simmen, T. (2010). Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. The Journal of biological chemistry 285, 31590-31602.
Cai, H., Reinisch, K., and Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12, 671-682.
Chang, N.C., Nguyen, M., Germain, M., and Shore, G.C. (2010). Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. The EMBO journal 29, 606-618.
Chen, B., Shen, S., Wu, J., Hua, Y., Kuang, M., Li, S., and Peng, B. (2015). CISD2 associated with proliferation indicates negative prognosis in patients with hepatocellular carcinoma. Int J Clin Exp Pathol 8, 13725-13738.
Chen, C.H., Huang, H., Ward, C.M., Su, J.T., Schaeffer, L.V., Guo, M., and Hay, B.A. (2007). A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316, 597-600.
Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Human molecular genetics 18, R169-176.
Chen, Y.F., Kao, C.H., Chen, Y.T., Wang, C.H., Wu, C.Y., Tsai, C.Y., Liu, F.C., Yang, C.W., Wei, Y.H., Hsu, M.T., et al. (2009). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & development 23, 1183-1194.
Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America 101, 15927-15932.
Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., and Guo, M. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166.
Colca, J.R., McDonald, W.G., Waldon, D.J., Leone, J.W., Lull, J.M., Bannow, C.A., Lund, E.T., and Mathews, W.R. (2004). Identification of a novel mitochondrial protein ('mitoNEET') cross-linked specifically by a thiazolidinedione photoprobe. American journal of physiology Endocrinology and metabolism 286, E252-260.
Coleman, R., Silbermann, M., Gershon, D., and Reznick, A.Z. (1987). Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology 33, 34-39.
Del Campo, A., Jaimovich, E., and Tevy, M.F. (2016). Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters. Oxid Med Cell Longev 2016, 9057593.
Demontis, F., and Perrimon, N. (2010). FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813-825.
Deng, H., Dodson, M.W., Huang, H., and Guo, M. (2008). The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105, 14503-14508.
Dudek, J., Rehling, P., and van der Laan, M. (2013). Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta 1833, 274-285.
Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., Petcherski, A., Ruonala, M.O., Priault, M., Salin, B., and Reichert, A.S. (2012). Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 1823, 2297-2310.
Geldenhuys, W.J., Benkovic, S.A., Lin, L., Yonutas, H.M., Crish, S.D., Sullivan, P.G., Darvesh, A.S., Brown, C.M., and Richardson, J.R. (2017). MitoNEET (CISD1) Knockout Mice Show Signs of Striatal Mitochondrial Dysfunction and a Parkinson's Disease Phenotype. ACS Chem Neurosci 8, 2759-2765.
Gomes, L.C., Di Benedetto, G., and Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature cell biology 13, 589-598.
Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B., and Pallanck, L.J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences of the United States of America 100, 4078-4083.
Griparic, L., Kanazawa, T., and van der Bliek, A.M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. The Journal of cell biology 178, 757-764.
Grosshans, B.L., Ortiz, D., and Novick, P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proceedings of the National Academy of Sciences of the United States of America 103, 11821-11827.
Guarani, V., McNeill, E.M., Paulo, J.A., Huttlin, E.L., Frohlich, F., Gygi, S.P., Van Vactor, D., and Harper, J.W. (2015). QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. Elife 4.
Gurkan, C., Koulov, A.V., and Balch, W.E. (2007). An evolutionary perspective on eukaryotic membrane trafficking. Adv Exp Med Biol 607, 73-83.
Haas, R.H. (2019). Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology (Basel) 8.
Hachiya, N., Mihara, K., Suda, K., Horst, M., Schatz, G., and Lithgow, T. (1995). Reconstitution of the initial steps of mitochondrial protein import. Nature 376, 705-709.
Haile, Y., Deng, X., Ortiz-Sandoval, C., Tahbaz, N., Janowicz, A., Lu, J.Q., Kerr, B.J., Gutowski, N.J., Holley, J.E., Eggleton, P., et al. (2017). Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation 14, 19.
Hara, Y., Yuk, F., Puri, R., Janssen, W.G., Rapp, P.R., and Morrison, J.H. (2014). Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proceedings of the National Academy of Sciences of the United States of America 111, 486-491.
He, Q.Q., Xiong, L.L., Liu, F., He, X., Feng, G.Y., Shang, F.F., Xia, Q.J., Wang, Y.C., Qiu, D.L., Luo, C.Z., et al. (2016). MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 6, 35205.
Hoppins, S., Lackner, L., and Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annual review of biochemistry 76, 751-780.
Hughes, A.L., Hughes, C.E., Henderson, K.A., Yazvenko, N., and Gottschling, D.E. (2016). Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife 5.
Inupakutika, M.A., Sengupta, S., Nechushtai, R., Jennings, P.A., Onuchic, J.N., Azad, R.K., Padilla, P., and Mittler, R. (2017). Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates. Sci Rep 7, 42571.
Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. (2005). Structure, function, and formation of biological iron-sulfur clusters. Annual review of biochemistry 74, 247-281.
Kiral, F.R., Kohrs, F.E., Jin, E.J., and Hiesinger, P.R. (2018). Rab GTPases and Membrane Trafficking in Neurodegeneration. Current biology : CB 28, R471-R486.
Koopman, W.J., Visch, H.J., Verkaart, S., van den Heuvel, L.W., Smeitink, J.A., and Willems, P.H. (2005). Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Cell Physiol 289, C881-890.
Kusminski, C.M., Holland, W.L., Sun, K., Park, J., Spurgin, S.B., Lin, Y., Askew, G.R., Simcox, J.A., McClain, D.A., Li, C., et al. (2012). MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nature medicine 18, 1539-1549.
Leduc-Gaudet, J.P., Picard, M., St-Jean Pelletier, F., Sgarioto, N., Auger, M.J., Vallee, J., Robitaille, R., St-Pierre, D.H., and Gouspillou, G. (2015). Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 6, 17923-17937.
Lonhienne, T.G., Sagulenko, E., Webb, R.I., Lee, K.C., Franke, J., Devos, D.P., Nouwens, A., Carroll, B.J., and Fuerst, J.A. (2010). Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences of the United States of America 107, 12883-12888.
MacVicar, T., and Langer, T. (2016). OPA1 processing in cell death and disease - the long and short of it. Journal of cell science 129, 2297-2306.
Matheoud, D., Sugiura, A., Bellemare-Pelletier, A., Laplante, A., Rondeau, C., Chemali, M., Fazel, A., Bergeron, J.J., Trudeau, L.E., Burelle, Y., et al. (2016). Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell 166, 314-327.
Mattson, M.P. (1998). Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21, 53-57.
Mattson, M.P. (2000). Apoptosis in neurodegenerative disorders. Nature reviews Molecular cell biology 1, 120-129.
Miyamoto, Y., Kitamura, N., Nakamura, Y., Futamura, M., Miyamoto, T., Yoshida, M., Ono, M., Ichinose, S., and Arakawa, H. (2011). Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PLoS One 6, e16054.
Moehle, E.A., Shen, K., and Dillin, A. (2019). Mitochondrial proteostasis in the context of cellular and organismal health and aging. The Journal of biological chemistry 294, 5396-5407.
Murgia, M., Toniolo, L., Nagaraj, N., Ciciliot, S., Vindigni, V., Schiaffino, S., Reggiani, C., and Mann, M. (2017). Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep 19, 2396-2409.
Neuspiel, M., Schauss, A.C., Braschi, E., Zunino, R., Rippstein, P., Rachubinski, R.A., Andrade-Navarro, M.A., and McBride, H.M. (2008). Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Current biology : CB 18, 102-108.
Noda, S., Sato, S., Fukuda, T., Tada, N., Uchiyama, Y., Tanaka, K., and Hattori, N. (2020). Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiol Dis 136, 104717.
Ogata, T., and Yamasaki, Y. (1997). Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248, 214-223.
Ohbayashi, N., Fukuda, M., and Kanaho, Y. (2017). Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking. J Biochem 162, 65-71.
Ortiz-Sandoval, C.G., Hughes, S.C., Dacks, J.B., and Simmen, T. (2014). Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cell Logist 4, e986399.
Osborne, B.A., and Minter, L.M. (2007). Notch signalling during peripheral T-cell activation and differentiation. Nature reviews Immunology 7, 64-75.
Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161.
Payne, B.A., and Chinnery, P.F. (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim Biophys Acta 1847, 1347-1353.
Perumalsamy, L.R., Nagala, M., and Sarin, A. (2010). Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proceedings of the National Academy of Sciences of the United States of America 107, 6882-6887.
Pesah, Y., Pham, T., Burgess, H., Middlebrooks, B., Verstreken, P., Zhou, Y., Harding, M., Bellen, H., and Mardon, G. (2004). Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131, 2183-2194.
Picard, M., White, K., and Turnbull, D.M. (2013). Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J Appl Physiol (1985) 114, 161-171.
Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., O'Hearn, S., Levy, S., Potluri, P., Lvova, M., et al. (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America 111, E4033-4042.
Pickrell, A.M., and Youle, R.J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273.
Rajendran, L., Knolker, H.J., and Simons, K. (2010). Subcellular targeting strategies for drug design and delivery. Nature reviews Drug discovery 9, 29-42.
Ramirez, S., Gomez-Valades, A.G., Schneeberger, M., Varela, L., Haddad-Tovolli, R., Altirriba, J., Noguera, E., Drougard, A., Flores-Martinez, A., Imbernon, M., et al. (2017). Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control. Cell Metab 25, 1390-1399 e1396.
Rana, A., Oliveira, M.P., Khamoui, A.V., Aparicio, R., Rera, M., Rossiter, H.B., and Walker, D.W. (2017). Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 8, 448.
Romanello, V., Guadagnin, E., Gomes, L., Roder, I., Sandri, C., Petersen, Y., Milan, G., Masiero, E., Del Piccolo, P., Foretz, M., et al. (2010). Mitochondrial fission and remodelling contributes to muscle atrophy. The EMBO journal 29, 1774-1785.
Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443-446.
Schneeberger, M., Dietrich, M.O., Sebastian, D., Imbernon, M., Castano, C., Garcia, A., Esteban, Y., Gonzalez-Franquesa, A., Rodriguez, I.C., Bortolozzi, A., et al. (2013). Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172-187.
Shen, Q., Yamano, K., Head, B.P., Kawajiri, S., Cheung, J.T., Wang, C., Cho, J.H., Hattori, N., Youle, R.J., and van der Bliek, A.M. (2014). Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Molecular biology of the cell 25, 145-159.
Shen, Z.Q., Chen, Y.F., Chen, J.R., Jou, Y.S., Wu, P.C., Kao, C.H., Wang, C.H., Huang, Y.L., Chen, C.F., Huang, T.S., et al. (2017). CISD2 Haploinsufficiency Disrupts Calcium Homeostasis, Causes Nonalcoholic Fatty Liver Disease, and Promotes Hepatocellular Carcinoma. Cell Rep 21, 2198-2211.
Shenouda, S.M., Widlansky, M.E., Chen, K., Xu, G., Holbrook, M., Tabit, C.E., Hamburg, N.M., Frame, A.A., Caiano, T.L., Kluge, M.A., et al. (2011). Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124, 444-453.
Shirihai, O.S., Song, M., and Dorn, G.W., 2nd (2015). How mitochondrial dynamism orchestrates mitophagy. Circulation research 116, 1835-1849.
Sing, A., Tsatskis, Y., Fabian, L., Hester, I., Rosenfeld, R., Serricchio, M., Yau, N., Bietenhader, M., Shanbhag, R., Jurisicova, A., et al. (2014). The atypical cadherin fat directly regulates mitochondrial function and metabolic state. Cell 158, 1293-1308.
Sohn, Y.S., Tamir, S., Song, L., Michaeli, D., Matouk, I., Conlan, A.R., Harir, Y., Holt, S.H., Shulaev, V., Paddock, M.L., et al. (2013). NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110, 14676-14681.
Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. The Journal of cell biology 178, 749-755.
Tagaya, M., and Arasaki, K. (2017). Regulation of Mitochondrial Dynamics and Autophagy by the Mitochondria-Associated Membrane. Adv Exp Med Biol 997, 33-47.
Tarasenko, D., Barbot, M., Jans, D.C., Kroppen, B., Sadowski, B., Heim, G., Mobius, W., Jakobs, S., and Meinecke, M. (2017). The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. The Journal of cell biology 216, 889-899.
Trushina, E., Nemutlu, E., Zhang, S., Christensen, T., Camp, J., Mesa, J., Siddiqui, A., Tamura, Y., Sesaki, H., Wengenack, T.M., et al. (2012). Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer's disease. PLoS One 7, e32737.
van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor perspectives in biology 5.
Vanlandingham, P.A., and Ceresa, B.P. (2009). Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. The Journal of biological chemistry 284, 12110-12124.
Vincent, A.E., White, K., Davey, T., Philips, J., Ogden, R.T., Lawess, C., Warren, C., Hall, M.G., Ng, Y.S., Falkous, G., et al. (2019). Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network. Cell Rep 26, 996-1009 e1004.
Waschbusch, D., Hubel, N., Ossendorf, E., Lobbestael, E., Baekelandt, V., Lindsay, A.J., McCaffrey, M.W., Khan, A.R., and Barnekow, A. (2019). Rab32 interacts with SNX6 and affects retromer-dependent Golgi trafficking. PLoS One 14, e0208889.
Weir, H.J., Yao, P., Huynh, F.K., Escoubas, C.C., Goncalves, R.L., Burkewitz, K., Laboy, R., Hirschey, M.D., and Mair, W.B. (2017). Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling. Cell Metab 26, 884-896 e885.
Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P., and Dixon, J.E. (2007). MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences of the United States of America 104, 5318-5323.
Winklhofer, K.F., and Haass, C. (2010). Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta 1802, 29-44.
Wolfram, D. (1938). Diabetes mellitus and simple optic atrophy among siblings: Report of 4 cases. 13, 715-718.
Yamada, T., Murata, D., Adachi, Y., Itoh, K., Kameoka, S., Igarashi, A., Kato, T., Araki, Y., Huganir, R.L., Dawson, T.M., et al. (2018). Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. Cell Metab 28, 588-604 e585.
Yang, Y., Gehrke, S., Imai, Y., Huang, Z., Ouyang, Y., Wang, J.W., Yang, L., Beal, M.F., Vogel, H., and Lu, B. (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proceedings of the National Academy of Sciences of the United States of America 103, 10793-10798.
Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology 9, 47-59.
Yu, T., Sheu, S.S., Robotham, J.L., and Yoon, Y. (2008). Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79, 341-351.
Yu, W., Sun, Y., Guo, S., and Lu, B. (2011). The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Human molecular genetics 20, 3227-3240.
Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nature reviews Molecular cell biology 2, 107-117.
Zhang, X., Zuo, X., Yang, B., Li, Z., Xue, Y., Zhou, Y., Huang, J., Zhao, X., Zhou, J., Yan, Y., et al. (2014). MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607-619.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62739-
dc.description.abstract過去研究指出老化相關疾病常伴隨粒線體形態及功能的異常,且年老的哺乳動物中,粒線體形態有巨大化的現象,顯示粒線體形態與功能的調控與老化息息相關,然而其中調控機制尚未清楚,因此我利用果蠅的肌肉組織為模型,探討粒線體於老化過程中形態及功能變化的詳細機制。我的研究中發現了參與調控老化的重要基因,Dosmit (Downsizing mitochondria)。Dosmit座落於粒線體外膜,其表現量隨老化漸增,並同時促進胞質蛋白進入粒線體,暗示此行為與老化相關,但機制仍未清楚。在Dosmit高量表現的條件下,粒線體呈現巨大化且內部產生許多含有胞質蛋白的雙層膜囊泡,而此囊泡被推測具有運輸功能。透過追蹤粒線體外膜蛋白Tom20,證明此雙層膜囊泡的膜系源自粒線體外膜。本論文進一步證明GTPase,Rab32不僅與Dosmit有蛋白間交互作用,且與Dosmit共同調控粒線體的巨大化及囊泡生成。於老化的果蠅中也可以觀察到粒線體巨大化及囊泡的產生,並發現泛素化蛋白大量在粒線體的囊泡中累積,且在粒線體蛋白酶Lon的缺失下,將引起更劇烈的泛素化蛋白累積現象,指出泛素化蛋白可能透過囊泡進入粒線體,並藉由蛋白酶Lon使其降解而維持粒線體功能平衡。Dosmit在哺乳動物中區分為Cisd1及Cisd2,而Dosmit卻融合了此二基因的序列,我將小鼠的Cisd1及Cisd2融合成重組基因,發現此重組基因能救回Dosmit剔除時所產生的粒線體缺陷。Dosmit的研究成果將為粒線體所造成的老化疾病提供新的治療途徑。zh_TW
dc.description.abstractMitochondrial aging, which results in mitochondrial dysfunction, is strongly linked to many age-related diseases. Aging is associated with mitochondrial enlargement and changes in the transport of cytosolic proteins into mitochondria. The underlying homeostatic mechanisms that regulate mitochondrial morphology and function, and breakdown during aging, remain unclear, though various important cytosolic proteins are known to be imported into mitochondria via a canonical pathway mediated by mitochondrial translocases (the TIM/TOM complex). Here I identify a novel pathway for mitochondrial protein trafficking in Drosophila melanogaster, involving the mitochondria-associated protein Dosmit. I found that Dosmit induces the formation of double-membraned vesicles within mitochondria, that the rate of vesicle formation increases with age, and that increased expression of Dosmit causes mitochondrial enlargement. When cytosolic green fluorescent protein (GFP) was ectopically expressed with Dosmit, intramitochondrial vesicles imported GFP from the cytosol. The outer-mitochondrial-membrane marker Tom20 was also associated with these vesicles, suggesting they originate from the outer mitochondrial membrane. The membrane trafficking process was mediated by the mitochondria-associated Rab protein Rab32. Dosmit expression levels were closely linked to the rate of aggregation of ubiquitinated proteins, which are themselves associated with age-related diseases. Finally, I found that expression of a hybrid form of the Dosmit mouse homolog resulted in a similar phenotype to that found with Drosophila Dosmit expression, suggesting a high level of evolutional conservation. This novel mitochondrial protein trafficking route mediated by Dosmit offers a promising target for future therapies targeting age-related mitochondrial diseases.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:09:02Z (GMT). No. of bitstreams: 1
ntu-109-D04b43001-1.pdf: 18555781 bytes, checksum: 07eaa612c0aaf1d4fc653bf8c3bcf8bf (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
1. Introduction 1
1.1 Mitochondrial function and dynamics 1
1.2 Mitochondrial defects in age-related neurological disorders 3
1.3 Mitochondria and aging 5
1.4 Mitochondrial import 6
1.5 Vesicular trafficking 7
1.6 Cisd protein family 10
2. Specific aims 13
3. Materials and Methods 14
3.1 Fly stocks and maintenance 14
3.2 Plasmids 15
3.3 Antibodies 16
3.4 Immunofluorescent staining of Drosophila muscle 16
3.5 Western blotting 17
3.6 Lifespan assay 18
3.7 Climbing assay 18
3.8 Co-immunoprecipitation (Co-IP) assay 18
3.9 Digitonin/proteinase K assay for S2 cells and tissue 19
3.10 Transmission electron microscopy 20
3.11 Immunoelectron microscopy and immunolabelling 20
3.12 Isolation of mitochondria from Drosophila flight-muscle tissue 21
3.13 Statistics and Reproducibility 21
4. Results 23
4.1 Aged mitochondria increase in size and contain intramitochondrial vesicles 23
4.2 Increase in mitochondrial size is not associated with the mitochondrial dynamic proteins Marf, Opa1, Drp1, and Fis1 25
4.3 Dosmit is a novel mitochondrial outer membrane protein which regulates mitochondrial morphology 27
4.4 Dosmit expression level was associated with aging and mitochondrial size 30
4.5 Ectopic expression of Dosmit enlarges mitochondria and induces the formation of intramitochondrial vesicles 32
4.6 Cytosolic proteins can be taken into intramitochondrial vesicles 35
4.7 Intramitochondrial vesicle membranes contain the outer-membrane protein Tom20 38
4.8 Aged and enlarged mitochondria import cytosolic GFP 40
4.9 Dosmit induces the formation of ubiquitinated proteins-containing vesicles in mitochondria 41
4.10 Rab32 interacts with Dosmit and locates on mitochondria that is mutually dependent 43
4.11 Rab32 plays a critical role in regulating Dosmit-driven mitochondrial enlargement and vesicle formation 45
4.12 Dosmit-induced mitochondrial enlargement may be suppressed by Drp1-induced mitochondrial dynamics 47
4.13 The N-terminus and CDGSH domains were required for Dosmit-induced mitochondrial enlargement 48
4.14 Mouse Cisd-domain hybrid protein may cause mitochondrial enlargement and rescue Drosophila Dosmit mutants 49
5. Discussion 51
6. References 59
7. Figures 71
dc.language.isoen
dc.title囊泡運輸參與胞質與粒線體間傳遞之功能探討zh_TW
dc.titleA Novel Vesicular-Transport Pathway Mediates the Uptake of Cytoplasmic Proteins into Mitochondriaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳益群(Yi-Chun Wu),王致恬(Chih-Tien Wang),汪宏達(Horng-Dar Wang),詹智強(Chih-Chiang Chan)
dc.subject.keyword果蠅,老化,粒線體,囊泡,泛素化蛋白,zh_TW
dc.subject.keywordDrosophila melanogaster,aging,mitochondria,intramitochondrial vesicles,ubiquitinated proteins,en
dc.relation.page116
dc.identifier.doi10.6342/NTU202000905
dc.rights.note有償授權
dc.date.accepted2020-06-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
ntu-109-1.pdf
  Restricted Access
18.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved