Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62675
標題: 偏微分方程組具隨機初始值
Partial Differential Equations with Random Initial Data
作者: Gi-Ren Liu
劉聚仁
指導教授: 謝南瑞
共同指導教授: 王振男
關鍵字: 偏微分方程,隨機場,
partial differential equations,random field,
出版年 : 2013
學位: 博士
摘要: In this thesis, we study the limiting distributions of linear systems of partial differential
equations with subordinated Gaussian random initial data. When the initial
data is non-random, the solutions of the linear systems are given by the convolution
of the Green kernels and the initial data. Therefore, the evolution of the solutions
is totally determined by their initial data. However, the information regarding the
initial data is obtained through some process of measurement, resulting in measurement
error. In our work, we use the second-order homogeneous random field to model
these measurement error and apply the spectral representation method to study the
covariance matrix functions of the random solution vector fields. In view of that the
solution fields can be thought of as the weighted sum of correlated random variables,
we will also consider the limiting distributions of the random solution fields from
di↵erent viewpoints, including macroscopic scales and microscopic scales. When the
random initial data is weakly dependent, our results can be thought of as a generalized
central limit theorem. There are two contributions for the new results. The first
one is that the initial data is modeled by two cross-correlated subordinated Gaussian
random fields. We use the method of Feynman diagrams to analyze the asymptotic
behavior of the covariance matrix function of the random solution field induced by
the random initial data. Second, the limit of the random solution vector field under
the macroscopic/microscopic coordinate systems is represented by a L2-convergent
series of mutually independent Gaussian random fields. We also study the limiting
distributions of the solution vector field when its random initial data is long-range
dependent. Compared to the previous case, the limiting law of the rescaled solution
vector field is non-Gaussian, which is represented by multiple Wiener integrals. In
contrast to the existing mathematical literature we found that there is a competition
relationship between the effect coming from two components of the random initial
data. That is, one of the two components of the random initial data will be determined dominantly the structure of the limiting distribution of the random part of the
solution vector field.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62675
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.18 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved