請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62665完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡丁貴(Ting-Kuei Tsay) | |
| dc.contributor.author | Jhu-Yun Dai | en |
| dc.contributor.author | 戴竺筠 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:06:56Z | - |
| dc.date.available | 2016-07-03 | |
| dc.date.copyright | 2013-07-03 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-06-13 | |
| dc.identifier.citation | 1. Berkhoff, J. C. W. (1972), “Computation of Combined Refraction-Diffraction.” Proc. 13th Conf. On Coastal Eng., Vol. 1, pp. 705-720.
2. Bettess, P., and Zienkiewicz, O. C. (1977), “Diffraction and refraction of surface waves using finite and infinite elements.” Int. J. for Numerical Method in Fluids, 2, 1271-1290. 3. Booij, N. (1983), “A note on the accuracy of the mild-slope equation.” Coastal Eng., 7,191-203. 4. Chen, H. S., and Mei, C. C. (1974), “Oscillations and wave forces in an offshore harbor.” Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, M.I.T. Cambridge, Mass., Report No.190. 5. Gill , A. E.(1982), Atmosphere-ocean dynamics. Academic Press, San Diego, Calif. 6. Homma, S. (1950), “On the behavior of seismic sea waves around circular island.” Geophysical Magazine, 21, 199. 7. Houston, J. R. (1981), “Combined refraction and diffraction of short waves using the finite element method.” Appl. Ocean Research, 3, 163-170. 8. MacCormick, R. C., and Fuch, K. A. (1954), “Wave forces on a pile: a diffraction theory.” Tech. Memo. No.69, U.S. Army Board, U.S. Army Corp. of Eng. 9. Onate, E., Idelsohn, S., Zienkiewicz, O. C. and Taylor, R. L. (1996), “A finite point method in computational mechanics. Applications to convective transport and fluid flow.” International Journal for Numerical Methods in Engineering; 39:3839-3866. 10. Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R. L. (1996), “Sacco C. A stabilized finite point method for analysis of fluid mechanics problems.” Computer Methods in Applied Mechanics and Engineering; 139:315-346. 11. Smith, R., and Sprinks, T. (1975), “Scattering of surface waves by a conical island.” J. Fluid Mech., 72, 373-384. 12. Tsay, T. K. and Liu, P. L.–F. (1983), “A Finite Element Model for Wave Refraction and Diffraction.” Applied Ocean Research, Vol.5, No. 1, pp. 30-37. 13. Tsay, T. K., Zhu, W. and Liu, P. L.–F. (1989), “A Finite Element Model for Wave Refraction and Diffraction, Reflection and Dissipation.” Applied Ocean Research, Vol.11, No. 1, pp. 33-38. 14. Tsay, T. K. (1991), “Linear surface waves over rotating fluids. ” J. Waterway, Port, Coastal, and Ocean Engineering,117(2). 15. Wu, N. J. and Tsay, T. K. (2012), “A Robust Local Polynomial Collocation Method.” International Journal for Numerical Methods in Engineering. 16. 吳智文,“無網格數值方法應用於水面波散射之研究”,國立台灣大學土木工程學研究所碩士論文,2008。 17. 郭思吟,“海岸水域潮汐數值模式之研究”,國立台灣大學土木工程學研究所碩士論文,1995。 18. 陳柏旭,蔡丁貴,“局部輻射邊界條件在水波數值模式上之應用”,第十二屆海洋工程研討會論文集,pp. 1-9,1990. 19. 楊淳文,“利用修正有限配點無網格法於水波散射問題”,國立台灣大學土木工程學研究所碩士論文,2012。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62665 | - |
| dc.description.abstract | 本研究探討在地球自轉的效應下,潮波遇到結構物或島嶼,發生繞射、反射及折射之後的振幅、相位及速度場的變化情形,以期能更準確的模擬自然現象。本研究最主要的目標為以下兩點,第一,針對數值計算方法中的參數選擇進行討論;另一個是利用本數值計算方法不只能夠順利求得速度勢能與波高,並且能直接準確求出速度勢能之偏導數而決定流場。
本研究應用修正有限配點法,根據Tasy (1991)推導建立緩坡方程式(mild-slope equation)之數值模式,且利用本模式計算入射水波受到等水深之圓柱及拋物線變化水深之圓島作用後,產生散射、繞射、折射的問題。 本文將數值計算結果與解析解比較,證明利用修正有限配點法所建立之潮波散射數值模式,可應用於研究海岸波浪之問題。並針對數值模式中的參數進行討論,推判本模式計算可達到穩定且準確目標。 | zh_TW |
| dc.description.abstract | When tide waves hits the island or construction, they reflect, diffract, and refract. This research studies the distribution of wave amplitude, and phase and velocity field of tidal waves including the effects of the Earth’s rotation. This research aims are two folds. One is to find a selection rule of the parameters in the chosen numerical method. The other one is the take advantage of the chores numerical method to determine tidal velocity field, after amplitude and phase of tidal waves are found.
In this research, the modified finite point collocation method (MFPM) is applied to establish a numerical model of tide flow hased on an extended mild-slope equation(1991), describing the phenomenon of combined reflection, diffraction and refraction of tide flow. Compare numerical model with analytic solution, it is concluded that a numerical model employed by MFPM can solve the problem of combined wave refraction and diffraction. Besides, this research has developed an rule for feller systematical selection of the parameter in the present numerical method, in order to achieve a accurate result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:06:56Z (GMT). No. of bitstreams: 1 ntu-102-R00521301-1.pdf: 8700601 bytes, checksum: 1c60907b048fd4874b713d5a54c9022d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 圖目錄 V 表目錄 IX 第一章 導論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 研究內容 4 第二章 潮波數學模式之建立 5 2-1 控制方程式 5 2-2 波場之邊界條件 7 第三章 潮波運動之數值模式 8 3-1 有限配點法(FPM) 8 3-2 修正有限配點法(MFPM) 13 3-3 潮波之數值模擬 15 3-3-1 單頻前進波受等水深圓柱體影響之散射 15 3-1-2 單頻前進波受拋物線變化水深圓島之散射 17 第四章 解析解與數值計算結果比較與討論 19 4-1 單頻前進波受等水深圓形柱體影響的散射 21 4-1-1 等水深圓柱周圍波場與流場之解析解 21 4-1-2 本文數值模式與解析解之波場與流場比較 24 4-2 單頻前進波受拋物線水深變化圓島散射流場 27 4-2-1 變水深圓島周圍波場與流場之解析解 27 4-2-2 本文數值模式與解析解之波場與流場比較 36 第五章 結論與建議 40 5-1 結論 40 5-2 建議 42 參考文獻 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 修正有限配點法 | zh_TW |
| dc.subject | 無網格數值方法 | zh_TW |
| dc.subject | 潮汐 | zh_TW |
| dc.subject | 緩坡方程式 | zh_TW |
| dc.subject | tide | en |
| dc.subject | Mild-slope equation | en |
| dc.subject | Modified Finite Point Method (MFPM) | en |
| dc.subject | Meshless method | en |
| dc.title | 修正有限配點法應用於水域潮汐數值模擬之研究 | zh_TW |
| dc.title | Applications of Modified Finite Point Method to Numerical Simulation of Tidal Waves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林銘崇(Ming-Chung Lin),蘇青和(Ching-Ho Su) | |
| dc.subject.keyword | 修正有限配點法,無網格數值方法,潮汐,緩坡方程式, | zh_TW |
| dc.subject.keyword | Modified Finite Point Method (MFPM),Meshless method,tide,Mild-slope equation, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-06-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
