請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯逢春(Ferng-Chun Ke) | |
| dc.contributor.author | Pei-Jen Wang | en |
| dc.contributor.author | 王培任 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:06:40Z | - |
| dc.date.available | 2016-06-21 | |
| dc.date.copyright | 2013-06-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-06-13 | |
| dc.identifier.citation | 1. Erol, A. (2011). Deciphering the intricate regulatory mechanisms for the cellular choice between cell repair, apoptosis or senescence in response to damaging signals. Cell Signal 23, 1076-1081.
2. Vicencio, J.M., Galluzzi, L., Tajeddine, N., Ortiz, C., Criollo, A., Tasdemir, E., Morselli, E., Ben Younes, A., Maiuri, M.C., Lavandero, S., et al. (2008). Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. Gerontology 54, 92-99. 3. Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9, 153-166. 4. Besson, A., Dowdy, S.F., and Roberts, J.M. (2008). CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14, 159-169. 5. Lipkowitz, S., and Weissman, A.M. (2011). RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11, 629-643. 6. Cajigas, I.J., Will, T., and Schuman, E.M. (2010). Protein homeostasis and synaptic plasticity. EMBO J 29, 2746-2752. 7. Polager, S., and Ginsberg, D. (2009). p53 and E2f: partners in life and death. Nat Rev Cancer 9, 738-748. 8. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20. 9. Bauer, D.E., Harris, M.H., Plas, D.R., Lum, J.J., Hammerman, P.S., Rathmell, J.C., Riley, J.L., and Thompson, C.B. (2004). Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18, 1303-1305. 10. Warburg, O. (1956). On respiratory impairment in cancer cells. Science 124, 269-270. 11. Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314. 12. Brand, K. (1985). Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 228, 353-361. 13. Hedeskov, C.J. (1968). Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. Biochem J 110, 373-380. 14. Roos, D., and Loos, J.A. (1973). Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp Cell Res 77, 127-135. 15. Wang, T., Marquardt, C., and Foker, J. (1976). Aerobic glycolysis during lymphocyte proliferation. Nature 261, 702-705. 16. Guppy, M., Greiner, E., and Brand, K. (1993). The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212, 95-99. 17. Kulbacka, J., Saczko, J., and Chwilkowska, A. (2009). [Oxidative stress in cells damage processes]. Pol Merkur Lekarski 27, 44-47. 18. Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434. 19. Marjanovic, S., Eriksson, I., and Nelson, B.D. (1990). Expression of a new set of glycolytic isozymes in activated human peripheral lymphocytes. Biochim Biophys Acta 1087, 1-6. 20. Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R., and Dang, C.V. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94, 6658-6663. 21. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. 22. Hatzivassiliou, G., Zhao, F., Bauer, D.E., Andreadis, C., Shaw, A.N., Dhanak, D., Hingorani, S.R., Tuveson, D.A., and Thompson, C.B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311-321. 23. Kuhajda, F.P., Jenner, K., Wood, F.D., Hennigar, R.A., Jacobs, L.B., Dick, J.D., and Pasternack, G.R. (1994). Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91, 6379-6383. 24. Pizer, E.S., Wood, F.D., Heine, H.S., Romantsev, F.E., Pasternack, G.R., and Kuhajda, F.P. (1996). Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56, 1189-1193. 25. Curi, R., Newsholme, P., and Newsholme, E.A. (1988). Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem J 250, 383-388. 26. Forbes, N.S., Meadows, A.L., Clark, D.S., and Blanch, H.W. (2006). Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metab Eng 8, 639-652. 27. Brand, A., Engelmann, J., and Leibfritz, D. (1992). A 13C NMR study on fluxes into the TCA cycle of neuronal and glial tumor cell lines and primary cells. Biochimie 74, 941-948. 28. Reitzer, L.J., Wice, B.M., and Kennell, D. (1979). Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254, 2669-2676. 29. Kovacevic, Z., and McGivan, J.D. (1983). Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63, 547-605. 30. DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104, 19345-19350. 31. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7, 261-269. 32. Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. 33. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-657. 34. Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A., and Pan, D. (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5, 578-581. 35. Li, Y., Corradetti, M.N., Inoki, K., and Guan, K.L. (2004). TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29, 32-38. 36. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K., and Avruch, J. (2005). Rheb binds and regulates the mTOR kinase. Curr Biol 15, 702-713. 37. Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484. 38. Sarbassov, D.D., Ali, S.M., and Sabatini, D.M. (2005). Growing roles for the mTOR pathway. Curr Opin Cell Biol 17, 596-603. 39. Martin, D.E., and Hall, M.N. (2005). The expanding TOR signaling network. Curr Opin Cell Biol 17, 158-166. 40. Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175. 41. Kim, D.H., Sarbassov, D.D., Ali, S.M., Latek, R.R., Guntur, K.V., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11, 895-904. 42. Hahn-Windgassen, A., Nogueira, V., Chen, C.C., Skeen, J.E., Sonenberg, N., and Hay, N. (2005). Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280, 32081-32089. 43. Barata, J.T., Silva, A., Brandao, J.G., Nadler, L.M., Cardoso, A.A., and Boussiotis, V.A. (2004). Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 200, 659-669. 44. Edinger, A.L., and Thompson, C.B. (2002). Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13, 2276-2288. 45. Roos, S., Jansson, N., Palmberg, I., Saljo, K., Powell, T.L., and Jansson, T. (2007). Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. J Physiol 582, 449-459. 46. Wieman, H.L., Wofford, J.A., and Rathmell, J.C. (2007). Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18, 1437-1446. 47. Xu, R.H., Pelicano, H., Zhang, H., Giles, F.J., Keating, M.J., and Huang, P. (2005). Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells. Leukemia 19, 2153-2158. 48. Elstrom, R.L., Bauer, D.E., Buzzai, M., Karnauskas, R., Harris, M.H., Plas, D.R., Zhuang, H., Cinalli, R.M., Alavi, A., Rudin, C.M., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64, 3892-3899. 49. Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C., and Thompson, C.B. (2001). Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem 276, 12041-12048. 50. Rathmell, J.C., Fox, C.J., Plas, D.R., Hammerman, P.S., Cinalli, R.M., and Thompson, C.B. (2003). Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23, 7315-7328. 51. Bauer, D.E., Hatzivassiliou, G., Zhao, F., Andreadis, C., and Thompson, C.B. (2005). ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314-6322. 52. Chang, Y., Wang, J., Lu, X., Thewke, D.P., and Mason, R.J. (2005). KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells. J Lipid Res 46, 2624-2635. 53. Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev 18, 1926-1945. 54. Tee, A.R., and Blenis, J. (2005). mTOR, translational control and human disease. Semin Cell Dev Biol 16, 29-37. 55. Richter, J.D., and Sonenberg, N. (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477-480. 56. Adhikary, S., and Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6, 635-645. 57. Mamane, Y., Petroulakis, E., Rong, L., Yoshida, K., Ler, L.W., and Sonenberg, N. (2004). eIF4E--from translation to transformation. Oncogene 23, 3172-3179. 58. Ruggero, D., Montanaro, L., Ma, L., Xu, W., Londei, P., Cordon-Cardo, C., and Pandolfi, P.P. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10, 484-486. 59. Nilsson, J.A., and Cleveland, J.L. (2003). Myc pathways provoking cell suicide and cancer. Oncogene 22, 9007-9021. 60. Blackwood, E.M., and Eisenman, R.N. (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211-1217. 61. Osthus, R.C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L.A., and Dang, C.V. (2000). Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275, 21797-21800. 62. Gordan, J.D., Thompson, C.B., and Simon, M.C. (2007). HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108-113. 63. Wise, D.R., DeBerardinis, R.J., Mancuso, A., Sayed, N., Zhang, X.Y., Pfeiffer, H.K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S.B., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105, 18782-18787. 64. Gao, P., Tchernyshyov, I., Chang, T.C., Lee, Y.S., Kita, K., Ochi, T., Zeller, K.I., De Marzo, A.M., Van Eyk, J.E., Mendell, J.T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765. 65. Coller, H.A., Grandori, C., Tamayo, P., Colbert, T., Lander, E.S., Eisenman, R.N., and Golub, T.R. (2000). Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 97, 3260-3265. 66. O'Connell, B.C., Cheung, A.F., Simkevich, C.P., Tam, W., Ren, X., Mateyak, M.K., and Sedivy, J.M. (2003). A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278, 12563-12573. 67. Li, F., Wang, Y., Zeller, K.I., Potter, J.J., Wonsey, D.R., O'Donnell, K.A., Kim, J.W., Yustein, J.T., Lee, L.A., and Dang, C.V. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25, 6225-6234. 68. Wiesener, M.S., Jurgensen, J.S., Rosenberger, C., Scholze, C.K., Horstrup, J.H., Warnecke, C., Mandriota, S., Bechmann, I., Frei, U.A., Pugh, C.W., et al. (2003). Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17, 271-273. 69. Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B., and Simon, M.C. (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23, 9361-9374. 70. Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-5514. 71. Kaelin, W.G., Jr., and Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30, 393-402. 72. Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A., and Simon, M.C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335-347. 73. Koshiji, M., Kageyama, Y., Pete, E.A., Horikawa, I., Barrett, J.C., and Huang, L.E. (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23, 1949-1956. 74. Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., and Semenza, G.L. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407-420. 75. Koshiji, M., To, K.K., Hammer, S., Kumamoto, K., Harris, A.L., Modrich, P., and Huang, L.E. (2005). HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17, 793-803. 76. To, K.K., Sedelnikova, O.A., Samons, M., Bonner, W.M., and Huang, L.E. (2006). The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. EMBO J 25, 4784-4794. 77. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185. 78. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3, 187-197. 79. Lum, J.J., Bui, T., Gruber, M., Gordan, J.D., DeBerardinis, R.J., Covello, K.L., Simon, M.C., and Thompson, C.B. (2007). The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21, 1037-1049. 80. Brugarolas, J., and Kaelin, W.G., Jr. (2004). Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6, 7-10. 81. Reiling, J.H., and Hafen, E. (2004). The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 18, 2879-2892. 82. Fong, G.H., and Takeda, K. (2008). Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 15, 635-641. 83. Semenza, G.L. (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19, 176-182. 84. Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. 85. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468. 86. Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340. 87. Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54. 88. Kaelin, W.G. (2005). Proline hydroxylation and gene expression. Annu Rev Biochem 74, 115-128. 89. Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., et al. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277, 26351-26355. 90. Schofield, C.J., and Ratcliffe, P.J. (2004). Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5, 343-354. 91. Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D'Acquisto, F., Addeo, R., Makuuchi, M., and Esumi, H. (2000). Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95, 189-197. 92. Sandau, K.B., Zhou, J., Kietzmann, T., and Brune, B. (2001). Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276, 39805-39811. 93. Zhang, Z., Ren, J., Harlos, K., McKinnon, C.H., Clifton, I.J., and Schofield, C.J. (2002). Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangements. FEBS Lett 517, 7-12. 94. Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B., and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77-85. 95. Koivunen, P., Hirsila, M., Remes, A.M., Hassinen, I.E., Kivirikko, K.I., and Myllyharju, J. (2007). Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282, 4524-4532. 96. Lee, S., Nakamura, E., Yang, H., Wei, W., Linggi, M.S., Sajan, M.P., Farese, R.V., Freeman, R.S., Carter, B.D., Kaelin, W.G., Jr., et al. (2005). Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8, 155-167. 97. Gerald, D., Berra, E., Frapart, Y.M., Chan, D.A., Giaccia, A.J., Mansuy, D., Pouyssegur, J., Yaniv, M., and Mechta-Grigoriou, F. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781-794. 98. Matsushime, H., Roussel, M.F., Ashmun, R.A., and Sherr, C.J. (1991). Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701-713. 99. Matsushime, H., Quelle, D.E., Shurtleff, S.A., Shibuya, M., Sherr, C.J., and Kato, J.Y. (1994). D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14, 2066-2076. 100. Malumbres, M., and Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1, 222-231. 101. Harbour, J.W., Luo, R.X., Dei Santi, A., Postigo, A.A., and Dean, D.C. (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859-869. 102. Boutros, R., Lobjois, V., and Ducommun, B. (2007). CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7, 495-507. 103. Rodriguez-Puebla, M.L., Miliani de Marval, P.L., LaCava, M., Moons, D.S., Kiyokawa, H., and Conti, C.J. (2002). Cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation. Am J Pathol 161, 405-411. 104. Yu, Q., Geng, Y., and Sicinski, P. (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017-1021. 105. Zacharek, S.J., Xiong, Y., and Shumway, S.D. (2005). Negative regulation of TSC1-TSC2 by mammalian D-type cyclins. Cancer Res 65, 11354-11360. 106. Shimura, T., Kakuda, S., Ochiai, Y., Nakagawa, H., Kuwahara, Y., Takai, Y., Kobayashi, J., Komatsu, K., and Fukumoto, M. (2010). Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene 29, 4826-4837. 107. Landis, M.W., Pawlyk, B.S., Li, T., Sicinski, P., and Hinds, P.W. (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9, 13-22. 108. Kozar, K., Ciemerych, M.A., Rebel, V.I., Shigematsu, H., Zagozdzon, A., Sicinska, E., Geng, Y., Yu, Q., Bhattacharya, S., Bronson, R.T., et al. (2004). Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477-491. 109. Jirawatnotai, S., Aziyu, A., Osmundson, E.C., Moons, D.S., Zou, X., Kineman, R.D., and Kiyokawa, H. (2004). Cdk4 is indispensable for postnatal proliferation of the anterior pituitary. J Biol Chem 279, 51100-51106. 110. Tsutsui, T., Hesabi, B., Moons, D.S., Pandolfi, P.P., Hansel, K.S., Koff, A., and Kiyokawa, H. (1999). Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 19, 7011-7019. 111. Malumbres, M., Sotillo, R., Santamaria, D., Galan, J., Cerezo, A., Ortega, S., Dubus, P., and Barbacid, M. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493-504. 112. Jiang, W., Kahn, S.M., Zhou, P., Zhang, Y.J., Cacace, A.M., Infante, A.S., Doi, S., Santella, R.M., and Weinstein, I.B. (1993). Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene 8, 3447-3457. 113. Quelle, D.E., Ashmun, R.A., Shurtleff, S.A., Kato, J.Y., Bar-Sagi, D., Roussel, M.F., and Sherr, C.J. (1993). Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7, 1559-1571. 114. Frei, C., and Edgar, B.A. (2004). Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Dev Cell 6, 241-251. 115. Datar, S.A., Jacobs, H.W., de la Cruz, A.F., Lehner, C.F., and Edgar, B.A. (2000). The Drosophila cyclin D-Cdk4 complex promotes cellular growth. EMBO J 19, 4543-4554. 116. Datar, S.A., Galloni, M., de la Cruz, A., Marti, M., Edgar, B.A., and Frei, C. (2006). Mammalian cyclin D1/Cdk4 complexes induce cell growth in Drosophila. Cell Cycle 5, 647-652. 117. Meyer, C.A., Jacobs, H.W., Datar, S.A., Du, W., Edgar, B.A., and Lehner, C.F. (2000). Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBO J 19, 4533-4542. 118. Fantl, V., Stamp, G., Andrews, A., Rosewell, I., and Dickson, C. (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9, 2364-2372. 119. Rane, S.G., Dubus, P., Mettus, R.V., Galbreath, E.J., Boden, G., Reddy, E.P., and Barbacid, M. (1999). Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22, 44-52. 120. Soni, R., Muller, L., Furet, P., Schoepfer, J., Stephan, C., Zumstein-Mecker, S., Fretz, H., and Chaudhuri, B. (2000). Inhibition of cyclin-dependent kinase 4 (Cdk4) by fascaplysin, a marine natural product. Biochem Biophys Res Commun 275, 877-884. 121. Lin, J., Yan, X.J., and Chen, H.M. (2007). Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemother Pharmacol 59, 439-445. 122. Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K.I., and Myllyharju, J. (2003). Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278, 30772-30780. 123. Huang, J., Zhao, Q., Mooney, S.M., and Lee, F.S. (2002). Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 277, 39792-39800. 124. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D., and Pouyssegur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22, 4082-4090. 125. Neufeld, T.P., de la Cruz, A.F., Johnston, L.A., and Edgar, B.A. (1998). Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183-1193. 126. Heinrich, E.C., Farzin, M., Klok, C.J., and Harrison, J.F. (2011). The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster. J Exp Biol 214, 1419-1427. 127. Metzen, E., Stiehl, D.P., Doege, K., Marxsen, J.H., Hellwig-Burgel, T., and Jelkmann, W. (2005). Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387, 711-717. 128. Pescador, N., Cuevas, Y., Naranjo, S., Alcaide, M., Villar, D., Landazuri, M.O., and Del Peso, L. (2005). Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 390, 189-197. 129. Marxsen, J.H., Stengel, P., Doege, K., Heikkinen, P., Jokilehto, T., Wagner, T., Jelkmann, W., Jaakkola, P., and Metzen, E. (2004). Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381, 761-767. 130. Appelhoff, R.J., Tian, Y.M., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., Ratcliffe, P.J., and Gleadle, J.M. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279, 38458-38465. 131. Koivunen, P., Tiainen, P., Hyvarinen, J., Williams, K.E., Sormunen, R., Klaus, S.J., Kivirikko, K.I., and Myllyharju, J. (2007). An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem 282, 30544-30552. 132. Cummins, E.P., Berra, E., Comerford, K.M., Ginouves, A., Fitzgerald, K.T., Seeballuck, F., Godson, C., Nielsen, J.E., Moynagh, P., Pouyssegur, J., et al. (2006). Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A 103, 18154-18159. 133. Liu, Y., Huo, Z., Yan, B., Lin, X., Zhou, Z.N., Liang, X., Zhu, W., Liang, D., Li, L., Liu, Y., et al. (2010). Prolyl hydroxylase 3 interacts with Bcl-2 to regulate doxorubicin-induced apoptosis in H9c2 cells. Biochem Biophys Res Commun 401, 231-237. 134. Rohrbach, S., Teichert, S., Niemann, B., Franke, C., and Katschinski, D.M. (2008). Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression. Biogerontology 9, 169-176. 135. Koditz, J., Nesper, J., Wottawa, M., Stiehl, D.P., Camenisch, G., Franke, C., Myllyharju, J., Wenger, R.H., and Katschinski, D.M. (2007). Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110, 3610-3617. 136. Ameri, K., and Harris, A.L. (2008). Activating transcription factor 4. Int J Biochem Cell Biol 40, 14-21. 137. Bruick, R.K. (2003). Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17, 2614-2623. 138. Moschella, M.C., Menzies, K., Tsao, L., Lieb, M.A., Kohtz, J.D., Kohtz, D.S., and Taubman, M.B. (1999). SM-20 is a novel growth factor-responsive gene regulated during skeletal muscle development and differentiation. Gene Expr 8, 59-66. 139. Lipscomb, E.A., Sarmiere, P.D., and Freeman, R.S. (2001). SM-20 is a novel mitochondrial protein that causes caspase-dependent cell death in nerve growth factor-dependent neurons. J Biol Chem 276, 5085-5092. 140. Besse, F., and Ephrussi, A. (2008). Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9, 971-980. 141. Kedersha, N., and Anderson, P. (2007). Mammalian stress granules and processing bodies. Methods Enzymol 431, 61-81. 142. Besson, A., Gurian-West, M., Schmidt, A., Hall, A., and Roberts, J.M. (2004). p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18, 862-876. 143. Zid, B.M., Rogers, A.N., Katewa, S.D., Vargas, M.A., Kolipinski, M.C., Lu, T.A., Benzer, S., and Kapahi, P. (2009). 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149-160. 144. Barth, S., Edlich, F., Berchner-Pfannschmidt, U., Gneuss, S., Jahreis, G., Hasgall, P.A., Fandrey, J., Wenger, R.H., and Camenisch, G. (2009). Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J Biol Chem 284, 23046-23058. 145. Frei, C., Galloni, M., Hafen, E., and Edgar, B.A. (2005). The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO J 24, 623-634. 146. Icreverzi, A., de la Cruz, A.F., Van Voorhies, W.A., and Edgar, B.A. (2012). Drosophila cyclin D/Cdk4 regulates mitochondrial biogenesis and aging and sensitizes animals to hypoxic stress. Cell Cycle 11, 554-568. 147. Baltzer, C., Tiefenbock, S.K., Marti, M., and Frei, C. (2009). Nutrition controls mitochondrial biogenesis in the Drosophila adipose tissue through Delg and cyclin D/Cdk4. PLoS One 4, e6935. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62655 | - |
| dc.description.abstract | 細胞生長(Cell growth)是推動細胞自我複製(Self-reproduction)的基礎,細胞自我複製最重要的原則就是要遵守忠實性(Fidelity)。細胞在生長時會進行代謝重整(metabolic reprogram),growth factor會刺激PI3K/AKT/mTOR pathway,mTORC1將4E-BP磷酸化,同時促使c-Myc、HIF-1α和Cyclin D大量產生。
c-Myc促進代謝重整,形成一個促進細胞生長的正回饋迴路(positive feedback loop)。而HIF-1α則是透過在各個層面對c-Myc產生拮抗,形成抑制細胞生長的負回饋迴路(negative feedback loop)。在一般的細胞生長情況下prolyl hydroxylase domain(PHD)系統會使得HIF-1α不斷的被分解,消除HIF-1α的負回饋迴路。在果蠅的研究指出過量表現CDK4-Cyclin D complex能透過果蠅的PHD系統促進細胞生長,顯示在細胞生長時CDK4-Cyclin D complex可能會透過PHD系統調控c-Myc和HIF-1α之間的平衡。本研究透過處理CDK4-Cyclin D complex活性抑制物Fascaplysin探討CDK4-Cyclin D complex對於細胞生長的調控,結果顯示在HeLa細胞中CDK4-Cyclin D complex會透過PHD系統去調控c-Myc和HIF-1α之間的平衡,進而影響細胞生長的進行,顯示CDK4-Cyclin D complex在細胞生長時會透過影響細胞內的代謝重整以及蛋白質的生合成以促進細胞生長。 | zh_TW |
| dc.description.abstract | Cell growth is the basis of cell self-reproduction driving. The most important standard of cell self-reproduction is to confirm the fidelity. Cell metabolism condition will regrogram during cell growth (metabolic reprogram). The growth factor will stimulate PI3K/AKT/mTOR signaling pathway during cell growth. Production of c-Myc, HIF-1α and Cyclin D will increase after 4E-BP is phosphorylated by mTORC1. Metabolic reprogram is enhanced by c-Myc and it will form a positive feedback loop that stimulate cell growth. However, HIF-1α will antagonize most effect of c-Myc during cell growth and form a negative feedback loop that inhibit cell growth. The prolyl hydroxylase domain (PHD) system will lead to HIF-1α degradation and eliminate the negative feedback loop of HIF-1α during normal cell growth. The studies in Drosophila melanogaster show that overexpression of CDK4-Cyclin D complex can promote cell growth through PHD of Drosophila. It suggests that CDK4-Cyclin D complex may regulate the balance between c-Myc and HIF-1α through the PHD system to promote cell growth. In this study, we treat Fascaplysin to investigate the cell growth regulation mechanism of CDK4-Cyclin D complex. Our results suggest that CDK4-Cyclin D complex may regulate the balance between c-Myc and HIF-1α through the PHD system to promote cell growth in HeLa cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:06:40Z (GMT). No. of bitstreams: 1 ntu-102-R97b43035-1.pdf: 1857637 bytes, checksum: 5936d354129a05224ff3303d9a0bbb3c (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………i
英文摘要……………………………………………………………ii 目錄…………………………………………………………………iii 圖目錄………………………………………………………………v 引言…………………………………………………………………1 細胞生長(Cell growth)為推動細胞自我複製的基礎…………2 細胞生長時需要有代謝重整(Metabolic Reprogram)的發生……2 細胞生長時能量來源主要為糖解作用:Warburg effect…………3 細胞生長時粒線體由細胞能量生產中心轉變為細胞代謝轉運中心4 細胞生長中心調節途徑: PI3K/AKT/mTOR pathway……………… 5 PI3K/AKT/mTOR pathway對於代謝重整(Metabolic Reprogram)的調控………7 mTORC1對細胞生長相關基因做轉譯的調控…………………………7 c-Myc促進形成細胞生長的正回饋迴路(Positive feedback loop) …………8 HIF-1α對於c-Myc產生拮抗形成抑制細胞生長的負回饋迴路(Negative feedback loop) …………………………………………9 細胞生長時PHD系統會促進HIF-1α分解並消除其抑制細胞生長的負回饋迴路………………………………………………………………11 細胞生長時CDK4-Cyclin D complex會促進細胞生長……………13 CDK4-Cyclin D complex的活性會影響細胞的大小(Cell size)15 材料與方法………………………………………………………17 材料………………………………………………………………17 細胞培養…………………………………………………………17 生長曲線…………………………………………………………18 細胞內涵物萃取…………………………………………………18 蛋白質濃度測定…………………………………………………19 蛋白質電泳與西方轉漬法………………………………………19 結果………………………………………………………………22 抑制CDK4-Cyclin D complex活性造成細胞增生停滯………22 抑制CDK4-Cyclin D complex活性造成HIF-1α蛋白質累積…22 抑制CDK4-Cyclin D complex活性造成Hydroxy-HIF-1α蛋白質減少……23 抑制CDK4-Cyclin D complex活性造成PHD蛋白質含量改變…23 抑制CDK4-Cyclin D complex活性造成c-Myc蛋白質減少……24 抑制CDK4-Cyclin D complex活性造成S6K與β-Tubulin蛋白質減少……25 抑制CDK4-Cyclin D complex活性影響蛋白質的轉譯…………25 討論………………………………………………………………27 CDK4-Cyclin D complex對於細胞生長的影響…………………27 CDK4-Cyclin D complex對於HIF-1α和c-Myc平衡的調控………28 CDK4-Cyclin D complex透過對PHD系統活性的調控影響HIF-1α蛋白質含量…………………………………………29 CDK4-Cyclin D complex透過調控PHD3蛋白質含量影響細胞生長30 CDK4-Cyclin D complex透過影響蛋白質轉譯調控PHD系統的活性31 CDK4-Cyclin D complex透過其它途徑調控PHD系統的活性………32 結果圖………………………………………………………………35 附錄圖………………………………………………………………46 參考文獻……………………………………………………………53 | |
| dc.language.iso | zh-TW | |
| dc.subject | CDK4 | zh_TW |
| dc.subject | Cyclin D | zh_TW |
| dc.subject | 細胞生長 | zh_TW |
| dc.subject | 忠實性 | zh_TW |
| dc.subject | 代謝重整 | zh_TW |
| dc.subject | Fascaplysin | zh_TW |
| dc.subject | c-Myc | zh_TW |
| dc.subject | HIF-1α | zh_TW |
| dc.subject | HIF-1α | en |
| dc.subject | CDK4 | en |
| dc.subject | Cyclin D | en |
| dc.subject | Cell growth | en |
| dc.subject | Fidelity | en |
| dc.subject | Metabolic Reprogram | en |
| dc.subject | Fascaplysin | en |
| dc.subject | c-Myc | en |
| dc.title | CDK4-Cyclin D對於細胞生長調控機制之探討 | zh_TW |
| dc.title | The Regulation Mechanism of CDK4-Cyclin D Complex in Cell Growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃火鍊,李明亭,黃娟娟,蕭培文 | |
| dc.subject.keyword | CDK4,Cyclin D,細胞生長,忠實性,代謝重整,Fascaplysin,c-Myc,HIF-1α, | zh_TW |
| dc.subject.keyword | CDK4,Cyclin D,Cell growth,Fidelity,Metabolic Reprogram,Fascaplysin,c-Myc,HIF-1α, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-06-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
