Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平(Chung-Ping Chen)
dc.contributor.authorMing-Hung Hsuen
dc.contributor.author許茗鈜zh_TW
dc.date.accessioned2021-06-16T16:06:18Z-
dc.date.available2018-06-21
dc.date.copyright2013-06-21
dc.date.issued2013
dc.date.submitted2013-06-17
dc.identifier.citation[1] Perryman AL, Lin JH, McCammon JA, 'HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs,' in Protein Sci. 13 (4): 1108-23, USA, Taiwan, 2003
[2] RCSB Protein Data Bank, http://www.rcsb.org/pdb/home/home.do
[3] Kurt Wuthrich, 'The way to NMR structure of proteins', Nature Structure Biology 8, 923 -925, 2001
[4] Wuthrich K, 'Protein structure determination in solution by NMR spectroscopy,' J. Biol. Chem. 265 (36) : 22059-62, 1990
[5] Bax A, Ikura M, 'An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins,' J. Biomol. NMR 1 (1): 99–104, 1991
[6] K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, 'How fast-folding proteins fold, ' Science 334, 517, 2011
[7] Ken A. Dill, Justin L. MacCallum, 'The Protein-Folding Problem, 50 Years On,' Science : Vol. 338 no. 6110 pp. 1042-1046, 2012
[8] EECS Instructional and Electronics support, University of California, Berkeley, https://inst.eecs.berkeley.edu/~ee127a/book/login/exa_protein_folding.html
[9] Wayne W. LaMorte, MD, PhD, MPH, Boston University School of Public Health, http://sph.bu.edu/otlt/MPH-Modules/PH/PH709_A_Cellular_World/PH709_A_Cellular_World6.html
[10] The Rational Response Squad, 'The Third Revolution,' 2007
[11] Davies, J., Shaffer Littlewood, B., 'An Introduction to the Chemistry of Living Cells,' Elementary Biochemistry, Prentice-Hall Inc, New Jersey, 1979
[12] Koolman, J., Rohm, K-H, 'Colour Atlas of Biochemistry,' Thieme, Stuttgart, 1996
[13] Timberlake, K.C., 'Chemistry – 5th Edition,' Haper-Collins Publichers Inc, NY, 1992
[14] Devlin, T.M., 'The Textbook of Biochemistry – 3th Edition,' Wiley-Liss Inc, NY, 1992
[15] N. Go, 'Theoretical studies of protein folding, 'Annual Review of Biophysics and Bioengineering, 12:183-210, 1983
[16] P. G. Wolynes, J. N. Onuchic, and D. Thirumalai, 'Navigating the folding routes,' Science, 267:1619, 1995
[17] K. A. Dill, 'Dominant forces in protein folding,' Biochemistry, 29:7133-7155, 1990
[18] K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. Chan, 'Principles of protein folding: A perspective from simple exact models,' Prot. Sci., 4:561-602, 1995
[19] A. Sali, E. Shakhnovich, and M. Karplus, 'How does a protein fold? ' Nature, 369:248-251, 1994
[20] Y. Q. Zhou and M. Karplus, 'Interpreting the folding kinetics of helical proteins,' Nature, 401:400-403, 1999
[21] E. Shakhnovich, 'Modeling protein folding: the beauty and power of simplicity,' Folding and Design, 1:50-54, 1996
[22] S. Miyazawa and R. L. Jernigan. 'Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation.' Macromolecules, 18:534-552, 1985
[23] G. M. Crippen, 'Easily searched protein folding potentials,' Journal of Molecular Biology, 260:467-175, 1996
[24] J. U. Bowie, R. Luthy, and D. Eisenberg, 'A method to identify protein sequences that fold into a known 3-dimensional structure,' Science, 253:164-170, 1991
[25] M. Hendlich, P. Lackner, S. Weitckus, H. Floeckner, R. Froschauer, K. Gottsbacher, G. Casari, and M. J. Sippl, 'Identification of native protein folds amongst a large number of incorrect models: The calculation of low energy conformations from potentials of mean force,' Journal of Molecular Biology, 216:167-180, 1990
[26] A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, 'A united-residue force field for off-lattice protein-structure simulations: functional forms and parameters of long-range side-chain interaction potentials from protein crystal data,' Journal of Computational Chemistry, 18:849-873, 1997
[27] Sun-Yuan Hsieh, De-Wei Lai, 'A New Branch and Bound Method for the protein Folding Problem Under the 2D-HP Model,' IEEE Transactions on nanobioscience, Vol. 10, No. 2, June, 2011
[28] Cheng-Jian Lin, Ming-Hua Hsieh, 'An efficient hybrid Taguchi-genetic algorithm for protein folding simulation,' Expert System with Applications, Volume 36, Issue 10, Pages 12446-12453, 2009
[29] R. Backofen, S. Will, and P. clote. 'Algorithmic approach to quantifying the hydrophobic force contribution in protein folding,' Altman R (ed), Pacific Symposium on Biocomputing, Honolulu, Pages 93-106, 2000
[30] K. A. Dill, 'Theory for the folding and stability of globular proteins,' Biochemistry, 24, 1985
[31] T. Jiang, Q. Cui, G. Shi, and S. Ma, 'Protein folding simulations of the hydrophobic-hydrophilic model by combining tabu search with genetic algorithms,' The Journal of chemical physics, 119(8):4592-4596, 2003
[32] K. F. Lau and K. A. Dill, 'A lattice statistical mechanics model of the conformation and sequence spaces of proteins,' Macromolecules, 22:3986-3997, 1989
[33] K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. Chan, 'Principles of protein folding: A perspective from simple exact models.' Prot. Sci., 4:561-602, 1995
[34] Alena Shmygelska, Holger H Hoos, 'An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem,' BMC Bioinformatics, 6:30, 2005
[35] Eyal Halm, 'Genetic Algorithm for Predicting Protein Folding in the 2D HP Model,' Advanced Computer Science, University of Leiden, 2007
[36] Mann M, Will S, Backofen R, 'Exact and complete algorithms for high throughput 3D lattice protein studies,' BMC Bioinformatics, 2008
[37] Sorin Istrail, Fumei Lam, 'Combinatorial Algorithms for Protein Folding in Lattice Models: A Survey of Mathematical Results,' Center for Computational Molecular Biology, Department of Computer Science, Brown University, 2009
[38] Chen Mao, Huang Wen-qi, 'Heuristic algorithm for off-lattice protein folding problem,' Journal of Zhejiang University SCIENCE B, ISSN 1673-1581, 2005
[39] Frank H. Stillinger, Teresa Head-Gordon, Catherine L. Hirshfeld, 'Toy model for protein folding,' Physical Review E, AT&T Bell Laboratories, 1993
[40] Xiaolong Zhang, Xiaoli Lin, Chengpeng Wan, Tingting Li, 'Genetic-Annealing Algorithm for 3D Off-lattice Protein Folding Model,' T. Washio et al. (Eds.): PAKDD 2007 Workshops, LNAI 4819, pp. 186-193, 2007
[41] Hsiao-Ping Hsu, Vishal Mehra, Peter Grassberger, 'Structure optimization in an off-lattice protein model,' Physical Review E 68, 037703, 2003
[42] A. Kumar, HJ. Chiu, HL. Axelrod, A. Morse, 'Crystal structure of NTF-2 like protein of unknown function.' JCSG, 2010
[43] Volker Heun, 'Approximate protein folding in the HP side chain model on extended cubic lattices,' Discrete Applied Mathematics, 127, 163-177, 2003
[44] Mai Suan Li, D. K. Klimov, D. Thirumalai, 'Folding in lattice models with side chains,' Computer Physics Communications, 2008
[45] William E. Hart, Sorin Istrail, 'Lattice and Off-Lattice Side Chain Models of Protein Folding: Linear Time Structure Prediction Better Than 86% of Optimal,' J Comput Biol., 4(3):241-59, 1997
[46] Michael Levitt, Arieh WarsheI, 'Computer simulation of protein folding,' Nature, Vol. 253, 694-698; doi:10.1038/253694a0, 2007
[47] I. D. Coope, L. C. W. Dixon, 'Circle Fitting by Linear and Nonlinear Least Squares,' Journal of optimization theory and applications, Vol. 76, No. 2, 1993
[48] Paul Sheer, 'A software assistant for manual stereo photometrology,' M. Sc. Thesis, University of the Witwatersrand, 1997
[49] John H. Holland, 'Outline for a Logical Theory of Adaptive Systems,' Journal of the ACM, 9(3):297-314, 1962
[50] John H. Holland, 'Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,' MIT Press, reprint edition, 1992
[51] Katherina von Carlowitz, 'Hybrid Genetic Algorithm for protein Folding Simulations in the 2D HP model,' 2008
[52] Tom M. Mitchell, 'Machine Learning, chapter Genetic Algorithms,' McGraw-Hill, 1997
[53] Katie Braden, 'A simple Approach to Protein Structure Prediction Using Genetic Algorithm,' Electrical Engineering Department, Stanford University
[54] Glover F, Kelly JP, Laguna M, 'Genetic algorithms and tabu search: Hybrids for optimization,' Computers and Operations Research, 22(1):111-134, 1995
[55] R. F. Mansour, 'Applying an Evolutionary Algorithm for Protein Structure Prediction,' Amercian Journal of Bioinformatics Research, 1(1): 18-23, 2011
[56] Zhu J, 'Non-classical mathematics for Intelligent System,' Huazhong University of Science and Technology Press, 285-288, 2001
[57] Xiaolong Zhang, Ting Wang, Huiping Luo, Jack Y Yang, Youping Deng, Jinshan Tang, Mary Qu Yang, '3D Protein structure prediction with genetic tabu search algorithm,' BMC System Biology, 4(Suppl 1):S6, 2010
[58] Ting Wang, Xiaolong Zhang, '3D Protein structure prediction with genetic tabu search algorithm in Off-Lattice AB model,' Second International Symposium on Knowledge Acquisition and Modeling, 2009
[59] P. Flory, 'Principles of Polymer Chemistry,' Cornell University Press, p. 672, ISBN 0801401348, 9780801401343, 1953
[60] Shmygelska A, Hernandez R, Hoos HH, 'An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem,' In Proc of the 3rd Intl Workshop on Ant Algorithms, ANTS LNCS 2463 Springer Verlag 40-52, 2002
[61] Krasnogor N, Hart WE, Smith J, Pelta DA, 'Protein structure prediction with evolutionary algorithms,' Proc of the Genetic and Evolutionary Computation conference, 1999
[62] Unger R, Moult J, 'Genetic algorithms for protein folding simulations,' J of Mol Biol 231:75-81, 1993
[63] Unger R, Moult J, 'A genetic algorithm for three dimensional protein folding simulations,' In Proc of the 5th Intl Conf on Genetic Algorithms Morgan Kaufmann Publishers, 581-588, 1993
[64] Bastolla U, Fravenkron H, Gestner E, Grassberger P, Nadler W, 'Testing a New Monte Carlo algorithm for the protein folding problem,' Proteins, 32:52-66, 1998
[65] Chikenji G, Kikuchi M, Iba Y, 'Multi-Self-Overlap Ensemble for protein folding: ground state search and thermodynamics,' Condensed Materials Archive, 27, 1999
[66] Liang F, Wong WH, 'Evolutionary Monte Carlo for protein folding simulations,' J Chem Phys, 115(7):3374-3380, 2001
[67] Beutler T, Dill K, 'A fast conformational search strategy for finding low energy structures of model proteins,' Protein Sci, 5:2037-2043, 1996
[68] Alena Shmygelska, Holger H Hoos, 'An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem,' BMC Bioinformatics, doi:10.1186/1471-2105-6-30, 2005
[69] HP Benchmarks, http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62641-
dc.description.abstract在計算生物學的研究上,預測蛋白質折疊後的結構以及功能,仍是現階段重要的課題。蛋白質的結構是由不同的胺基酸序列所構成,受到原子間及分子間的作用力,而互相吸引與排斥,發生摺疊。蛋白質的構造與蛋白質的功能有密切的相關性,若是蛋白質摺疊發生錯誤,導致形成不正常的構造,將會失去原有的功能與特性,引發疾病,在人類醫學的記錄上,如阿茲海默症(Alzheimer’s disease)與普昂疾病( Prion disease),都是因為蛋白質發生錯誤的折疊,所引起的生理病變。
本論文將針對蛋白質摺疊預測問題,提出一套系統式的計算流程。在系統中,我們首先使用親疏水性晶格模型(Hydrophobic-Hydrophilic Lattice Model),將胺基酸序列分成親水性與疏水性的單體,做直角與平角的折疊,並使用基因演算法(Genetic Algorithms),來預測出蛋白質的初步立體結構。接著,我們引入親疏水性非晶格模型(Hydrophobic-Hydrophilic Off-Lattice Model),將親疏水性晶格模型的運算結果,進行連續角度與扭轉度的運算,透過基因與禁忌搜尋演算法(Tabu Search Algorithm),獲得蛋白質最為安定的結構,以及其結構所對應到的最小能量。我們結合晶格模型與非晶格模型,截取各模型的優點,我們可以降低運算的時間,並仍然保有好的精確度。最後,我們提出了分支模型(Branch Model ),這是一套新的模型。在分支模型中,我們將蛋白質長鏈中的肽鍵( Peptide )結構,視為極性分子團,並獨立考慮蛋白質單體中的側鏈( Side Chain )結構,由於側鏈的結構,將會決定蛋白質親疏水性的特性,進而決定蛋白質整體結構,以及蛋白質與蛋白質之間的作用關係,因此必須將側鏈所造成的影響,考慮到計算當中。
在分支模型的架構下,經由基因演算法與禁忌演算法,我們已經能更精確的預測出蛋白質的結構,對於預測蛋白質折疊後的藥物設計模擬程序,提供更高可靠性的資訊。
zh_TW
dc.description.abstractIn the field of Computational Biology research, predicting protein structure and function after folding is a significant issue. Protein Structures are composed of different sequences of amino acid. Since interactions between atoms and molecules exist, attractive and repulsive forces are generated, and this results in folding. There is an affinity between protein structure and protein function. If the folding process fails, abnormal protein structures form, and the function and characteristics of protein are spent, which can lead to severe disease. Alzheimer’s disease and Parkinson’s disease are examples of the physiological changes caused by protein misfolding.
This thesis offers a system-calculated process of protein folding prediction. In our calculated system, we first apply the Hydrophobic-Hydrophilic Lattice Model to classify amino acids into two types, characterized by hydrophobic and hydrophilic molecules. We then fold the protein sequence in perpendicular direction, or not fold, and apply the Genetic Algorithm to obtain the preliminary three-dimensional structure of the protein. Second, we apply the Hydrophobic-Hydrophilic Off-Lattice Model, and input the result of the first step into the system, considering the continuous bending angles and torsional angles in specific range, and then we apply the Genetic Algorithms and Tabu Search to get the stable protein structure and general minimum energy. Based on our calculated system, we propose that the Hybrid Model is composed of a Lattice Model and an Off-Lattice Model. We intercept the advantages of these two models, and not only reduce the computation time, but also retain good accuracy on energy calculation. Finally, we propose the Branch Model, which is the new model used in the protein folding simulation. In the Branch Model, we regard the peptide as the big polar molecules in the protein sequence, and take the side chains of each amino acid into account. Indeed, the characteristics of hydrophobic and hydrophilic amino acids, and the structure of protein after folding, even the protein-protein interaction, are related, in that the side chains of each amino acid have interactions with each other. This is the primary reason we propose the use of the Branch Model; we want to consider the influence of side chain interaction in protein folding calculation.
The protein folding simulation results using the Branch Model that this thesis advances are more precise than either the Lattice Model or Off-Lattice Model. Moreover, we can reduce the computation time and retain good accuracy simultaneously. There is no doubt that we provide highly reliable information for drug design simulation after the step of predicting the protein folding structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:06:18Z (GMT). No. of bitstreams: 1
ntu-102-R00945033-1.pdf: 5885713 bytes, checksum: b49b5c56d5b0a8d270af67c0774bf89f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xxviii
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Protein Folding Problem 5
1.3 Proposed Approach 7
1.4 Thesis Overview 11
Chapter 2 Protein Folding Model 13
2.1 Protein Structure 14
2.2 HP Lattice Model 19
2.3 AB Off-Lattice Model 24
2.4 Branch Model 28
Chapter 3 Protein Folding Simulation Algorithm 35
3.1 Single AB Off-Lattice Model System (2D) 36
3.1.1 Plug-in Method 36
3.1.2 Curve fitting Method 40
3.2 Hybrid Branch Model System (3D) 43
3.2.1 Genetic Algorithms 44
3.2.2 Tabu Search 48
Chapter 4 Hybrid Branch Model System 54
4.1 Lattice Section Calculation 58
4.1.1 HP Lattice Model Calculation 59
4.1.2 Pre-processing of Off-Lattice Model Calculation 65
4.2 Off-Lattice Section Calculation 67
4.2.1 AB Off Lattice Model Calculation 68
4.2.2 Branch Model Calculation 77
Chapter 5 Simulation Result 88
5.1 HP Lattice Model Simulation 89
5.1.1 Parameters 89
5.1.2 Protein data 90
5.1.3 Result 91
5.2 Hybrid Model Simulation 130
5.2.1 Parameters 131
5.2.2 Protein Data 133
5.2.3 Result 134
5.3 Hybrid Branch Model Simulation 163
5.3.1 Parameters 165
5.3.2 Protein Data 167
5.3.3 Result 168
Chapter 6 Conclusion and Future Work 207
REFERENCE 210
dc.language.isoen
dc.subject分支模型zh_TW
dc.subject蛋白質折疊zh_TW
dc.subject親疏水性晶格模型zh_TW
dc.subject禁忌演算法zh_TW
dc.subject側鏈zh_TW
dc.subject親疏水性非晶格模型zh_TW
dc.subject基因演算法zh_TW
dc.subjectBranch Modelen
dc.subjectSide Chainen
dc.subjectTabu Searchen
dc.subjectGenetic Algorithmsen
dc.subjectHydrophobic-Hydrophilic Off-Lattice Modelen
dc.subjectprotein foldingen
dc.subjectHydrophobic-Hydrophilic Lattice Modelen
dc.title混合分支模型之蛋白質折疊問題模擬研究zh_TW
dc.titleHybrid Branch Model System of Protein Folding Simulationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭德盛(Te-Son Kuo),阮雪芬(Hsueh-Fen Juan)
dc.subject.keyword蛋白質折疊,分支模型,親疏水性晶格模型,親疏水性非晶格模型,基因演算法,禁忌演算法,側鏈,zh_TW
dc.subject.keywordprotein folding,Branch Model,Hydrophobic-Hydrophilic Lattice Model,Hydrophobic-Hydrophilic Off-Lattice Model,Genetic Algorithms,Tabu Search,Side Chain,en
dc.relation.page216
dc.rights.note有償授權
dc.date.accepted2013-06-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved