請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李心予(Hsinyu Lee) | |
| dc.contributor.author | Bo-Jeng Wang | en |
| dc.contributor.author | 王柏堅 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:05:53Z | - |
| dc.date.available | 2015-07-25 | |
| dc.date.copyright | 2013-07-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-06-19 | |
| dc.identifier.citation | 1. Van den Berg, M., et al., The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci, 2006. 93(2): p. 223-41.
2. Thomas, V.M. and T.G. Spiro, Peer Reviewed: The U.S. Dioxin Inventory: Are There Missing Sources? Environmental Science & Technology, 1996. 30(2): p. 82A-85A. 3. Dyke, P.H., et al., A review of dioxin releases to land and water in the UK. Science of The Total Environment, 1997. 207(2–3): p. 119-131. 4. Laroo, C.A., et al., Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines. Chemosphere, 2012. 89(11): p. 1287-94. 5. Liu, G., et al., Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces. Environ Sci Pollut Res Int, 2012. 19(8): p. 3645-50. 6. Tian, H., et al., Temporal Trends and Spatial Variation Characteristics of Hazardous Air Pollutant Emission Inventory from Municipal Solid Waste Incineration in China. Environmental Science & Technology, 2012. 46(18): p. 10364-10371. 7. Milbrath, M.O., et al., Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect, 2009. 117(3): p. 417-25. 8. Marlowe, J.L. and A. Puga, Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem, 2005. 96(6): p. 1174-84. 9. Hahn, M.E., Aryl hydrocarbon receptors: diversity and evolution. Chemico-Biological Interactions, 2002. 141(1–2): p. 131-160. 10. Poland, A., E. Glover, and A.S. Kende, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem, 1976. 251(16): p. 4936-46. 11. Burbach, K.M., A. Poland, and C.A. Bradfield, Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci U S A, 1992. 89(17): p. 8185-9. 12. Kawajiri, K. and Y. Fujii-Kuriyama, Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Arch Biochem Biophys, 2007. 464(2): p. 207-12. 13. Santostefano, M.J., et al., A Pharmacodynamic Analysis of TCDD-Induced Cytochrome P450 Gene Expression in Multiple Tissues: Dose- and Time-Dependent Effects. Toxicology and Applied Pharmacology, 1998. 151(2): p. 294-310. 14. Zhang, Z.-Y., et al., Preferential inducibility of CYP1A1 and CYP1A2 by TCDD: Differential regulation in primary human hepatocytes versus transformed human cells. Biochemical and Biophysical Research Communications, 2006. 341(2): p. 399-407. 15. Singh, N.P., et al., Prenatal exposure to TCDD triggers significant modulation of microRNA expression profile in the thymus that affects consequent gene expression. PLoS ONE, 2012. 7(9): p. e45054. 16. Watanabe, S., K. Kitamura, and M. Nagahashi, Effects of dioxins on human health: a review. J Epidemiol, 1999. 9(1): p. 1-13. 17. Kogevinas, M., Human health effects of dioxins: cancer, reproductive and endocrine system effects. Human Reproduction Update, 2001. 7(3): p. 331-339. 18. Silverstone, A.E., D.E. Frazier, Jr., and T.A. Gasiewicz, Alternate immune system targets for TCDD: lymphocyte stem cells and extrathymic T-cell development. Exp Clin Immunogenet, 1994. 11(2-3): p. 94-101. 19. Marshall, N.B. and N.I. Kerkvliet, Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann N Y Acad Sci, 2010. 1183: p. 25-37. 20. Akahoshi, E., et al., Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study. Environ Health, 2009. 8: p. 24. 21. Latchney, S.E., et al., Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Stem Cells Dev, 2011. 20(2): p. 313-26. 22. Akahoshi, E., et al., Tyrosine hydroxylase assay: a bioassay for aryl hydrocarbon receptor-active compounds based on tyrosine hydroxylase promoter activation. Toxicol Mech Methods, 2012. 22(6): p. 458-60. 23. Panteleyev, A.A. and D.R. Bickers, Dioxin-induced chloracne--reconstructing the cellular and molecular mechanisms of a classic environmental disease. Exp Dermatol, 2006. 15(9): p. 705-30. 24. Kennedy, L.H., et al., 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Mediated Production of Reactive Oxygen Species Is An Essential Step in the Mechanism of Action to Accelerate Human Keratinocyte Differentiation. Toxicological Sciences, 2013. 132(1): p. 235-249. 25. Kim, H.-A., et al., Immunotoxicological Effects of Agent Orange Exposure to the Vietnam War Korean Veterans. INDUSTRIAL HEALTH, 2003. 41(3): p. 158-166. 26. Oh, E., et al., Evaluation of immuno- and reproductive toxicities and association between immunotoxicological and genotoxicological parameters in waste incineration workers. Toxicology, 2005. 210(1): p. 65-80. 27. Saberi Hosnijeh, F., et al., Plasma Cytokine Concentrations in Workers Exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Front Oncol, 2012. 2: p. 37. 28. Gupta, A., et al., Serum dioxin, testosterone, and subsequent risk of benign prostatic hyperplasia: a prospective cohort study of Air Force veterans. Environ Health Perspect, 2006. 114(11): p. 1649-54. 29. Manikkam, M., et al., Dioxin (TCDD) Induces Epigenetic Transgenerational Inheritance of Adult Onset Disease and Sperm Epimutations. PLoS ONE, 2012. 7(9): p. e46249. 30. Knerr, S. and D. Schrenk, Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Mol Nutr Food Res, 2006. 50(10): p. 897-907. 31. Pesatori, A., et al., Cancer incidence in the population exposed to dioxin after the 'Seveso accident': twenty years of follow-up. Environmental Health, 2009. 8(1): p. 39. 32. Buan, E., et al., Correction of discrepancies in dioxin quantification between immunoassay and gas chromatography-high-resolution mass spectrometry. Anal Bioanal Chem, 2010. 398(5): p. 2233-41. 33. Reiner, E.J., et al., Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal Bioanal Chem, 2006. 386(4): p. 791-806. 34. Behnisch, P.A., K. Hosoe, and S. Sakai, Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology. Environ Int, 2001. 27(5): p. 413-39. 35. Billiard, S.M., et al., Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002. 133(1): p. 55-68. 36. Zajicek James, L., et al., Application of Enzyme-Linked Immunosorbent Assay for Measurement of Polychlorinated Biphenyls from Hydrophobic Solutions, in Environmental Immunochemical Methods1996, American Chemical Society. p. 307-325. 37. Sugawara, Y., et al., Development of a highly sensitive enzyme-linked immunosorbent assay based on polyclonal antibodies for the detection of polychlorinated dibenzo-p-dioxins. Anal Chem, 1998. 70(6): p. 1092-9. 38. Okuyama, M., et al., Enzyme-linked immunosorbent assay for monitoring toxic dioxin congeners in milk based on a newly generated monoclonal anti-dioxin antibody. Anal Chem, 2004. 76(7): p. 1948-56. 39. Murk, A.J., et al., Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol, 1996. 33(1): p. 149-60. 40. Zhang, Z.R., et al., Improvement of chemically-activated luciferase gene expression bioassay for detection of dioxin-like chemicals. Biomed Environ Sci, 2002. 15(1): p. 58-66. 41. Joung, K.E., Y.H. Chung, and Y.Y. Sheen, DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples. Sci Total Environ, 2007. 372(2-3): p. 657-67. 42. Chou, I.C., et al., Validation of the CALUX bioassay as a screening and semi-quantitative method for PCDD/F levels in cow's milk. Journal of Hazardous Materials, 2008. 154(1-3): p. 1166-1172. 43. Bradlaw, J.A., et al., Comparative induction of aryl hydrocarbon hydroxylase activity in vitro by analogues of dibenzo-p-dioxin. Food Cosmet Toxicol, 1980. 18(6): p. 627-35. 44. Sawyer, T. and S. Safe, PCB isomers and congeners: Induction of aryl hydrocarbon hydroxylase and ethoxyresorufin O-deethylase enzyme activities in rat hepatoma cells. Toxicology Letters, 1982. 13(1-2): p. 87-93. 45. Lin, C.I., et al., Establishment of a fluorescence resonance energy transfer-based bioassay for detecting dioxin-like compounds. J Biomed Sci, 2008. 15(6): p. 833-40. 46. Wu, P. and L. Brand, Resonance energy transfer: methods and applications. Anal Biochem, 1994. 218(1): p. 1-13. 47. Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nat Biotechnol, 2003. 21(11): p. 1387-95. 48. Khan, S., et al., Molecular mechanism of inhibitory aryl hydrocarbon receptor-estrogen receptor/Sp1 cross talk in breast cancer cells. Mol Endocrinol, 2006. 20(9): p. 2199-214. 49. Tian, W., et al., Immunoanalysis methods for the detection of dioxins and related chemicals. Sensors (Basel), 2012. 12(12): p. 16710-31. 50. Nording, M., et al., Rapid screening of dioxin-contaminated soil by accelerated solvent extraction/purification followed by immunochemical detection. Anal Bioanal Chem, 2006. 385(2): p. 357-66. 51. Fukuda, I., et al., A new southwestern chemistry-based ELISA for detection of aryl hydrocarbon receptor transformation: application to the screening of its receptor agonists and antagonists. J Immunol Methods, 2004. 287(1-2): p. 187-201. 52. He, G., et al., Third-generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness. Toxicol Sci, 2011. 123(2): p. 511-22. 53. Behnisch, P.A., et al., Screening of Dioxin-Like Toxicity Equivalents for Various Matrices with Wildtype and Recombinant Rat Hepatoma H4IIE Cells. Toxicological Sciences, 2002. 69(1): p. 125-130. 54. Wiebel, F.J., M. Wegenke, and F. Kiefer, Bioassay for determining 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEs) in human hepatoma Hepg2 cells. Toxicol Lett, 1996. 88(1-3): p. 335-8. 55. Sun, X., et al., Development of an exonuclease protection mediated PCR bioassay for sensitive detection of Ah receptor agonists. Toxicol Sci, 2004. 80(1): p. 49-53. 56. You, F., et al., Cell-Free Bioassay for Measurement of Dioxins Based on Fluorescence Enhancement of Fluorescein Isothiocyanate-Labeled DNA Probe. Analytical Chemistry, 2006. 78(20): p. 7138-7144. 57. Zhao, L.-F., et al., Densitometry determination of dioxins using gold nanoparticlemodified dioxin response element probes. Gold Bulletin, 2007. 40(4): p. 305-309. 58. Wang, B.J., et al., Establishment of a cell-free bioassay for detecting dioxin-like compounds. Toxicol Mech Methods, 2013. 59. Kulkarni, P.S., J.G. Crespo, and C.A. Afonso, Dioxins sources and current remediation technologies--a review. Environ Int, 2008. 34(1): p. 139-53. 60. Domingo, J.L., et al., Dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by a population living in the vicinity of a hazardous waste incinerator. Assessment of the temporal trend. Environ Int, 2012. 50C: p. 22-30. 61. Yoshioka, W., R.E. Peterson, and C. Tohyama, Molecular targets that link dioxin exposure to toxicity phenotypes. J Steroid Biochem Mol Biol, 2011. 127(1-2): p. 96-101. 62. Reiner, E.J., The analysis of dioxins and related compounds. Mass Spectrom Rev, 2010. 29(4): p. 526-59. 63. Perdew, G.H., Association of the Ah receptor with the 90-kDa heat shock protein. J Biol Chem, 1988. 263(27): p. 13802-5. 64. Henry, E.C. and T.A. Gasiewicz, Transformation of the aryl hydrocarbon receptor to a DNA-binding form is accompanied by release of the 90 kDa heat-shock protein and increased affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem J, 1993. 294 ( Pt 1): p. 95-101. 65. Shetty, P.V., B.Y. Bhagwat, and W.K. Chan, P23 enhances the formation of the aryl hydrocarbon receptor-DNA complex. Biochem Pharmacol, 2003. 65(6): p. 941-8. 66. Cox, M.B. and C.A. Miller, 3rd, Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones, 2004. 9(1): p. 4-20. 67. Mimura, J. and Y. Fujii-Kuriyama, Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta, 2003. 1619(3): p. 263-8. 68. Nichkova, M., et al., Immunochemical determination of dioxins in sediment and serum samples. Talanta, 2004. 63(5): p. 1213-23. 69. Scippo, M.L., et al., DR-CALUX((R)) screening of food samples: evaluation of the quantitative approach to measure dioxin, furans and dioxin-like PCBs. Talanta, 2004. 63(5): p. 1193-202. 70. Akahoshi, E., S. Yoshimura, and M. Ishihara-Sugano, Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study. Environ Health, 2006. 5: p. 24. 71. Angers, S., et al., Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A, 2000. 97(7): p. 3684-9. 72. Boute, N., R. Jockers, and T. Issad, The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci, 2002. 23(8): p. 351-4. 73. Matikainen, T.M., et al., Ligand Activation of the Aromatic Hydrocarbon Receptor Transcription Factor Drives Bax-Dependent Apoptosis in Developing Fetal Ovarian Germ Cells. Endocrinology, 2002. 143(2): p. 615-620. 74. Kim, J.Y., et al., Benzo[a]pyrene Induces Apoptosis in RL95-2 Human Endometrial Cancer Cells by Cytochrome P450 1A1 Activation. Endocrinology, 2007. 148(10): p. 5112-5122. 75. Kee, K., et al., Human Primordial Germ Cell Formation Is Diminished by Exposure to Environmental Toxicants Acting through the AHR Signaling Pathway. Toxicological Sciences, 2010. 117(1): p. 218-224. 76. Riddick, D.S., et al., 2,3,7,8-Tetrachlorodibenzo-p-dioxin versus 3-methylcholanthrene: comparative studies of Ah receptor binding, transformation, and induction of CYP1A1. J Biol Chem, 1994. 269(16): p. 12118-28. 77. Kann, S., et al., Arsenite-Induced Aryl Hydrocarbon Receptor Nuclear Translocation Results in Additive Induction of Phase I Genes and Synergistic Induction of Phase II Genes. Molecular Pharmacology, 2005. 68(2): p. 336-346. 78. Davarinos, N.A. and R.S. Pollenz, Aryl Hydrocarbon Receptor Imported into the Nucleus following Ligand Binding Is Rapidly Degraded via the Cytosplasmic Proteasome following Nuclear Export. Journal of Biological Chemistry, 1999. 274(40): p. 28708-28715. 79. Probst, M.R., et al., Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Molecular Pharmacology, 1993. 44(3): p. 511-518. 80. Sogawa, K. and Y. Fujii-Kuriyama, Ah Receptor, a Novel Ligand-Activated Transcription Factor. Journal of Biochemistry, 1997. 122(6): p. 1075-1079. 81. Casado, F.L., K.P. Singh, and T.A. Gasiewicz, Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway-specific gene modulation reflecting changes in cellular trafficking and migration. Mol Pharmacol, 2011. 80(4): p. 673-82. 82. Yang, J.H. and H.G. Lee, 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis of articular chondrocytes in culture. Chemosphere, 2010. 79(3): p. 278-84. 83. Sulentic, C.E. and N.E. Kaminski, The long winding road toward understanding the molecular mechanisms for B-cell suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci, 2011. 120 Suppl 1: p. S171-91. 84. Arisawa, K., H. Takeda, and H. Mikasa, Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. J Med Invest, 2005. 52(1-2): p. 10-21. 85. El-Fouly, M.H., et al., Production of a novel recombinant cell line for use as a bioassay system for detection of 2,3,7,8-tetrachlorodibenzo-P-dioxin-like chemicals. Environmental Toxicology and Chemistry, 1994. 13(10): p. 1581-1588. 86. Garrison, P.M., et al., Species-Specific Recombinant Cell Lines as Bioassay Systems for the Detection of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-like Chemicals. Fundamental and Applied Toxicology, 1996. 30(2): p. 194-203. 87. Richter, C.A., et al., An in vitro rainbow trout cell bioassay for aryl hydrocarbon receptor-mediated toxins. Environmental Toxicology and Chemistry, 1997. 16(3): p. 543-550. 88. Zacharewski, T., et al., Applications of the in vitro aryl hydrocarbon hydroxylase induction assay for determining '2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents': pyrolyzed brominated flame retardants. Toxicology, 1988. 51(2-3): p. 177-89. 89. Sanderson, J.T., S.W. Kennedy, and J.P. Giesy, In vitro induction of ethoxyresorufin-O-deethylase and porphyrins by halogenated aromatic hydrocarbons in avian primary hepatocytes. Environmental Toxicology and Chemistry, 1998. 17(10): p. 2006-2018. 90. Petrulis, J.R., et al., Application of the ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic compounds. Environ Toxicol, 2001. 16(2): p. 177-84. 91. Bank, P.A., et al., DNA binding of the transformed guinea pig hepatic Ah receptor complex: identification and partial characterization of two high-affinity DNA-binding forms. Arch Biochem Biophys, 1995. 317(2): p. 439-48. 92. Harrison, R.O. and R.E. Carlson, An immunoassay for TEQ screening of dioxin/furan samples: current status of assay and applications development. Chemosphere, 1997. 34(5-7): p. 915-28. 93. Henry, E.C. and T.A. Gasiewicz, Agonist but not antagonist ligands induce conformational change in the mouse aryl hydrocarbon receptor as detected by partial proteolysis. Mol Pharmacol, 2003. 63(2): p. 392-400. 94. Kronenberg, S., C. Esser, and C. Carlberg, An aryl hydrocarbon receptor conformation acts as the functional core of nuclear dioxin signaling. Nucleic Acids Res, 2000. 28(12): p. 2286-91. 95. Karolewski, B.A., et al., Comparison of transfection conditions for a lentivirus vector produced in large volumes. Hum Gene Ther, 2003. 14(14): p. 1287-96. 96. Keitel, V., et al., The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology, 2007. 45(3): p. 695-704. 97. Tian, H., et al., A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. Br J Pharmacol, 2007. 150(3): p. 321-34. 98. Huranova, M., et al., In vivo detection of RNA-binding protein interactions with cognate RNA sequences by fluorescence resonance energy transfer. RNA, 2009. 15(11): p. 2063-71. 99. Freeman, B.C. and K.R. Yamamoto, Disassembly of transcriptional regulatory complexes by molecular chaperones. Science, 2002. 296(5576): p. 2232-5. 100. Hong, B., et al., Impact of WHO 2005 revised toxic equivalency factors for dioxins on the TEQs in serum, household dust and soil. Chemosphere, 2009. 76(6): p. 727-33. 101. Long, M., et al., Effects of currently used pesticides in the AhR-CALUX assay: comparison between the human TV101L and the rat H4IIE cell line. Toxicology, 2003. 194(1–2): p. 77-93. 102. Elbekai, R.H. and A.O.S. El-Kadi, Modulation of aryl hydrocarbon receptor-regulated gene expression by arsenite, cadmium, and chromium. Toxicology, 2004. 202(3): p. 249-269. 103. Vondraček, J., et al., Aryl Hydrocarbon Receptor-Activating Polychlorinated Biphenyls and Their Hydroxylated Metabolites Induce Cell Proliferation in Contact-Inhibited Rat Liver Epithelial Cells. Toxicological Sciences, 2005. 83(1): p. 53-63. 104. Billiard, S.M., et al., The Role of the Aryl Hydrocarbon Receptor Pathway in Mediating Synergistic Developmental Toxicity of Polycyclic Aromatic Hydrocarbons to Zebrafish. Toxicological Sciences, 2006. 92(2): p. 526-536. 105. Anwar-Mohamed, A., et al., Differential modulation of aryl hydrocarbon receptor regulated enzymes by arsenite in the kidney, lung, and heart of C57BL/6 mice. Archives of Toxicology, 2012. 86(6): p. 897-910. 106. Fochi, I., et al., Modeling of DR CALUXR bioassay response to screen PCDDs, PCDFs, and dioxin-like PCBs in farm milk from dairy herds. Regulatory Toxicology and Pharmacology, 2008. 50(3): p. 366-375. 107. Hoogenboom, R., et al., The use of the DR CALUXR bioassay and indicator polychlorinated biphenyls for screening of elevated levels of dioxins and dioxin-like polychlorinated biphenyls in eel. Molecular Nutrition & Food Research, 2006. 50(10): p. 945-957. 108. Wang, B.J., et al., Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds. Toxicol Mech Methods, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62624 | - |
| dc.description.abstract | 戴奧辛類與類戴奧辛化合物包括多氯二聯苯戴奧辛、多氯二聯苯呋喃及多氯聯苯。戴奧辛類和類戴奧辛化合物為化學合成中的副產物,可經由焚化爐產生的廢氣、汽機車引擎的排放、石化工廠原料製程及一般燃燒行為中產生。在所有的戴奧辛類和類戴奧辛化合物的生物檢測中,2, 3, 7, 8-四氯二聯苯戴奧辛(2, 3, 7, 8-TCDD)被認定是毒性最強。
目前戴奧辛類和類戴奧辛化合物的成分定量檢測主要採用氣象層析-高解析度質譜儀(GC/HRMS)。然而,時間和成本考量使得氣象層析-高解析度質譜儀無法應用於大量日常性的例行檢測分析。本論文的第一部分,我們陳述了高靈敏度與低成本的生物冷光及生物冷光共振能量轉移的替代方案。我們建立了AAPH 細胞株,其穩定表現 AhR 和 Renilla luciferase融合蛋白 (AhR-RL)與Hsp90 和 yellow fluorescent protein 融合蛋白(Hsp90-YFP)。在AAPA細胞株中,則是穩定表現AhR-RL融合蛋白與Arnt 和 yellow fluorescent protein 融合蛋白(Arnt-YFP)。當細胞中兩融合蛋白接近時,Renilla luciferase所產生的冷光可用來激發YFP且應用於偵測檢體中戴奧辛類和類戴奧辛化合物的含量。另外,我們同時發現2, 3, 7, 8-四氯二聯苯戴奧辛會促進AhR-RL融合蛋白降解,因而減少AAPH細胞的冷光值,其偵測靈敏度達到10-17 M。 為減少動物實驗與長時間的細胞培養,我們在論文的第二部分使用AAPA的細胞粹取物來偵測戴奧辛類和類戴奧辛化合物的含量。我們發現AhR 促效藥 3-methylcholanthrene (3MC)會促進AhR 與Arn結合,因而避免遭蛋白酶體降解。 此外。3MC或2, 3, 7, 8-四氯二聯苯戴奧辛會穩定AAPA細胞粹取物的AhR-RL融合蛋白冷光並以偵測戴奧辛類和類戴奧辛化合物的含量,其2, 3, 7, 8-四氯二聯苯戴奧辛偵測靈敏度達到10-18 M。 使用戴奧辛類和類戴奧辛化合物會造成AhR–RL 降解的原理,2, 3, 7, 8-四氯二聯苯戴奧辛在AAPH細胞的偵測靈敏度可達到10 aM.。在AAPA 細胞粹取物中,戴奧辛類和類戴奧辛化合物會穩定AhR–RL融合蛋白,其2, 3, 7, 8-四氯二聯苯戴奧辛偵測靈敏度接近1 aM. 此外,所有的反應可在2到3小時內完成,且費用遠低於其他實驗室所發展的生物檢測系統或氣象層析-高解析度質譜儀方法。總結來說,我們所發展的戴奧辛生物檢測系統將可應用於大量例行性環境汙染物檢測並幫助維護公共衛生。 | zh_TW |
| dc.description.abstract | Dioxins and dioxin-like compounds include polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls, which are byproducts of chemical processes, including municipal waste incineration, automobile engines, fossil-fuels, and backyard barrel burning. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is considered to be the most toxic species of all dioxin-like compounds.
At present, gas chromatography with high-resolution mass spectrometry (GC/HRMS) is considered the gold standard for detection of dioxins. However, cost-ineffectiveness and excess time consumption limit their routine utilization. In the first part of my thesis, we describe highly sensitive and cost-effective alternative methods, based on bioluminescence and bioluminescence resonance energy transfer. We generated cell lines that stably co-express a fusion protein of AhR and Renilla luciferase (AhR-RL) and either Hsp90 or Arnt tagged with yellow fluorescent protein (Hsp90-YFP in AAPH cells or Arnt-YFP in AAPA cells). The fluorescent signals of YFP are activated by the emission of RL while the interactions between AhR and Hsp90 (or Arnt) were monitored. In addition, TCDD treatment reduced Renilla luminescence in AAPH cells in a concentration-dependent manner, due to degradation of AhR. Intriguingly, the detection limit for dioxin in our AhR degradation assay was as low as 10-17 M. To decrease the use of animals and long-term cell cultures, AAPA cell-free extracts were applied for detection of dioxins and dioxin-like compounds in the second part of my thesis. Treatment with 3-methylcholanthrene (3MC), an AhR agonist, enhanced the interaction between AhR and Arnt and avoided proteosomal degradation. In addition, treatment with 3MC or TCDD stabilized Renilla luciferase from AhR-RL of AAPA cell-free extracts in a concentration-dependent manner. The TCDD detection limit in this cell-free system was as low as 10−18 M. The TCDD detection limit in our cell-based method, which can be used to estimate the rate of AhR–RL degradation, was close to 10 aM. In our cell-free method, which measures the stability of AhR–RL, the detection limit was as low as 1 aM. Moreover, the total reaction time was approximately 2 to 3 h, and the total cost was considerably lower than that of other bioassays or GC technologies. Therefore, our findings may contribute toward the detection of environmental contaminants, thereby helping to protect human health. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:05:53Z (GMT). No. of bitstreams: 1 ntu-102-D97b41005-1.pdf: 1619029 bytes, checksum: 4a2b83a37dfe29f3baf5edff15a9688c (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要…………i
Summary…………iii Table of content…………v List of figures…………vii List of table…………vii Chapter 1. Introduction…………1 1.1 Dioxins and dioxin-like compounds…………2 1.2 Sources of dioxins and dioxin-like compounds…………3 1.3 Cellular signaling pathway of dioxins and dioxin-like compounds…………3 1.4 Pathogenic effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin…………5 1.5 Analytic methods of dioxins and dioxin-like compounds…………6 1.6 Development of alternative methods for detecting dioxins and dioxin-like compounds…………7 Chapter 2. Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds…………10 2.1 Abstract…………11 2.2 Introduction…………13 2.3 Materials and Methods…………16 2.4 Results…………24 2.5 Discussion…………35 Chapter 3. Establishment of a cell-free bioassay for detecting dioxin-like compounds…………38 3.1 Abstract…………39 3.2 Introduction…………41 3.3 Materials and Methods…………43 4.4 Results…………50 4.5 Discussion…………60 Chapter 4. Concluding remarks and future perspectives…………62 Reference…………66 Appendix: List of publication…………79 | |
| dc.language.iso | en | |
| dc.subject | 戴奧辛 | zh_TW |
| dc.subject | AhR | zh_TW |
| dc.subject | 生物檢測 | zh_TW |
| dc.subject | Hsp90 | zh_TW |
| dc.subject | Arnt | zh_TW |
| dc.subject | dioxin | en |
| dc.subject | AhR | en |
| dc.subject | Arnt | en |
| dc.subject | Hsp90 | en |
| dc.subject | bioassay | en |
| dc.title | 戴奧辛生物檢測系統之建立 | zh_TW |
| dc.title | Establishment of dioxin bioassay system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 廖永豐(Yung-Feng Liao) | |
| dc.contributor.oralexamcommittee | 易玲輝(Ling-Huei Yih),黃偉邦(Wei-Pang Huang) | |
| dc.subject.keyword | 戴奧辛,AhR,Arnt,Hsp90,生物檢測, | zh_TW |
| dc.subject.keyword | dioxin,AhR,Arnt,Hsp90,bioassay, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-06-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
