請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62571
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉 | |
dc.contributor.author | Hsiao-Mei Yeh | en |
dc.contributor.author | 葉曉玫 | zh_TW |
dc.date.accessioned | 2021-06-16T16:04:42Z | - |
dc.date.available | 2018-07-03 | |
dc.date.copyright | 2013-07-03 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-06-25 | |
dc.identifier.citation | 參考文獻
1. Boddien, A. and Junge, H. (2011), 'Acidic ideas for hydrogen storage', Nature Nanotechnology, 6 (5), 265-266. 2. Butler, M.A., Nasby, R.D. and Quinn, R.K. (1976), 'Tungsten Trioxide as an Electrode for Photoelectrolysis of Water', Solid State Communications, 19 (10), 1011-1014. 3. Chiarello, G.L., Aguirre, M.H. and Selli, E. (2010), 'Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2', Journal of Catalysis, 273 (2), 182-190. 4. Cui, W.Q., Ma, S.S., Liu, L., Hu, J.S. and Liang, Y.H. (2012), 'CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation', Journal of Molecular Catalysis a-Chemical, 359 35-41. 5. Daskalaki, V.M., Antoniadou, M., Puma, G.L., Kondarides, D.I. and Lianos, P. (2010), 'Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater', Environmental Science & Technology, 44 (19), 7200-7205. 6. Enthaler, S., von Langermann, J. and Schmidt, T. (2010), 'Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?', Energy & Environmental Science, 3 (9), 1207-1217. 7. Fujihara, B., Ohno, T. and Matsumura, M. (1998), 'Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles', Journal of the Chemical Society-Faraday Transactions, 94 (24), 3705-3709. 8. Fujishima, A. and Honda, K. (1972), 'Electrochemical Photolysis of Water at a Semiconductor Electrode', Nature, 238 (5358), 37-38. 9. Galinska, A. and Walendziewski, J. (2005), 'Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents', Energy & Fuels, 19 (3), 1143-1147. 10. Gong, D., Grimes, C.A., Varghese, O.K., Hu, W.C., Singh, R.S., Chen, Z. and Dickey, E.C. (2001), 'Titanium oxide nanotube arrays prepared by anodic oxidation', Journal of Materials Research, 16 (12), 3331-3334. 11. Gratzel, M. (2001), 'Photoelectrochemical cells', Nature, 414 (6861), 338-344. 12. Halasi, G., Schubert, G. and Solymosi, F. (2012), 'Photolysis of HCOOH over Rh Deposited on Pure and N-Modified TiO2 Production of Pure H2', Catalysis Letters, 142 (2), 218-223. 13. Hoffman, D.R. (2010), 'Ant venoms', Current Opinion in Allergy and Clinical Immunology, 10 (4), 342-346. 14. Hoyer, P. (1996), 'Formation of a titanium dioxide nanotube array', Langmuir, 12 (6), 1411-1413. 15. Hu, C.Q., Ting, S.W., Tsui, J. and Chan, K.Y. (2012), 'Formic acid dehydrogenation over PtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor', International Journal of Hydrogen Energy, 37 (8), 6372-6380. 16. Hultman, M. and Yaras, A. (2012), 'The socio-technological history of hydrogen and fuel cells in Sweden 1978-2005; mapping the innovation trajectory', International Journal of Hydrogen Energy, 37 (17), 12043-12053. 17. Iijima, S. (1991), 'Helical microtubules of graphitic carbon', Nature, 354 (6348), 56-58. 18. Jaeger, V., Wilson, W. and Subramanian, V. (2011), 'Photodegradation of methyl orange and 2,3-butanedione on titanium-dioxide nanotube arrays efficiently synthesized on titanium coils', Applied Catalysis B-Environmental, 110 6-13. 19. Jang, J.S., Choi, S.H., Kim, H.G. and Lee, J.S. (2008), 'Location and State of Pt in Platinized CdS/TiO2 Photocatalysts for Hydrogen Production from Water under Visible Light', Journal of Physical Chemistry C, 112 (44), 17200-17205. 20. Jang, J.S., Li, W., Oh, S.H. and Lee, J.S. (2006), 'Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light', Chemical Physics Letters, 425 (4-6), 278-282. 21. Johnson, T.C., Morris, D.J. and Wills, M. (2010), 'Hydrogen generation from formic acid and alcohols using homogeneous catalysts', Chemical Society Reviews, 39 (1), 81-88. 22. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. (1998), 'Formation of titanium oxide nanotube', Langmuir, 14 (12), 3160-3163. 23. Kudo, A. (2003), 'Photocatalyst materials for water splitting', Catalysis Surveys from Asia, 7 (1), 31-38. 24. Li, C.L., Yuan, J.A., Han, B.Y., Jiang, L. and Shangguan, W.F. (2010), 'TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation', International Journal of Hydrogen Energy, 35 (13), 7073-7079. 25. Linsebigler, A.L., Lu, G.Q. and Yates, J.T. (1995), 'Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results', Chemical Reviews, 95 (3), 735-758. 26. Lv, X.J., Fu, W.F., Chang, H.X., Zhang, H., Cheng, J.S., Zhang, G.J., Song, Y., Hu, C.Y. and Li, J.H. (2012), 'Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals', Journal of Materials Chemistry, 22 (4), 1539-1546. 27. Maeda, K., Higashi, M., Lu, D.L., Abe, R. and Domen, K. (2010), 'Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst', Journal of the American Chemical Society, 132 (16), 5858-5868. 28. Mangrulkar, P.A., Polshettiwar, V., Labhsetwar, N.K., Varma, R.S. and Rayalu, S.S. (2012), 'Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light', Nanoscale, 4 (16), 5202-5209. 29. Melo, M.D. and Silva, L.A. (2011), 'Visible light-induced hydrogen production from glycerol aqueous solution on hybrid Pt-CdS-TiO2 photocatalysts', Journal of Photochemistry and Photobiology a-Chemistry, 226 (1), 36-41. 30. Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003), 'Fabrication of tapered, conical-shaped titania nanotubes', Journal of Materials Research, 18 (11), 2588-2593. 31. Ou, H.H. and Lo, S.L. (2007), 'Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene', Journal of Molecular Catalysis a-Chemical, 275 (1-2), 200-205. 32. Ou, H.H., Lo, S.L. and Liou, Y.H. (2007), 'Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment', Nanotechnology, 18 (17), 175702-175707. 33. Rice, C., Ha, S., Masel, R.I. and Wieckowski, A. (2003), 'Catalysts for direct formic acid fuel cells', Journal of Power Sources, 115 (2), 229-235. 34. Riegel, G. and Bolton, J.R. (1995), 'Photocatalytic Efficiency Variability in Tio2 Particles', Journal of Physical Chemistry, 99 (12), 4215-4224. 35. Robert, D. (2007), 'Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications', Catalysis Today, 122 (1-2), 20-26. 36. Sayama, K., Mukasa, K., Abe, R., Abe, Y. and Arakawa, H. (2002), 'A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis', Journal of Photochemistry and Photobiology a-Chemistry, 148 (1-3), 71-77. 37. Serpone, N., Borgarello, E. and Gratzel, M. (1984), 'Visible-Light Induced Generation of Hydrogen from H2s in Mixed Semiconductor Dispersions - Improved Efficiency through Inter-Particle Electron-Transfer', Journal of the Chemical Society-Chemical Communications, (6), 342-344. 38. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H. (1995), 'Exploiting the Interparticle Electron-Transfer Process in the Photocatalyzed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol - Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors', Journal of Photochemistry and Photobiology a-Chemistry, 85 (3), 247-255. 39. Silva, L.A., Ryu, S.Y., Choi, J., Choi, W. and Hoffmann, M.R. (2008), 'Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS', Journal of Physical Chemistry C, 112 (32), 12069-12073. 40. Tabata, M., Maeda, K., Higashi, M., Lu, D.L., Takata, T., Abe, R. and Domen, K. (2010), 'Modified Ta3N5 Powder as a Photocatalyst for O2 Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light', Langmuir, 26 (12), 9161-9165. 41. Tedsree, K., Li, T., Jones, S., Chan, C.W.A., Yu, K.M.K., Bagot, P.A.J., Marquis, E.A., Smith, G.D.W. and Tsang, S.C.E. (2011), 'Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst', Nature Nanotechnology, 6 (5), 302-307. 42. Tsuji, I., Kato, H., Kobayashi, H. and Kudo, A. (2004), 'Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures', Journal of the American Chemical Society, 126 (41), 13406-13413. 43. Turner, J.A. (2004), 'Sustainable hydrogen production', Science, 305 (5686), 972-974. 44. Wu, X., Jiang, Q.Z., Ma, Z.F., Fu, M. and Shangguan, W.F. (2005), 'Synthesis of titania nanotubes by microwave irradiation', Solid State Communications, 136 (9-10), 513-517. 45. Xiang, D.H., Zhu, Y.B., Cai, C.J., He, Z.J., Liu, Z.S., Yin, D.G. and Luo, J. (2011), 'A new simple synthesis of CdS nano-particles by composite-molten-salt method and their high photocatalytic degradation activity', Physica E-Low-Dimensional Systems & Nanostructures, 44 (3), 733-737. 46. Yang, X.Y., Xiao, T.C. and Edwards, P.P. (2011), 'The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting', International Journal of Hydrogen Energy, 36 (11), 6546-6552. 47. Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T. and Zhang, L.Z. (2002), 'Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders', Chemistry of Materials, 14 (9), 3808-3816. 48. Zhang, D.F. (2012), 'Visible light-induced photocatalysis through surface plasmon excitation of platinum-metallized titania for photocatalytic bleaching of rhodamine B', Monatshefte Fur Chemie, 143 (5), 729-738. 49. Zhang, Y.J. and Zhang, L. (2009), 'Photocatalytic degradation of formic acid with simultaneous production of hydrogen over Pt and Ru-loaded CdS/Al-HMS photocatalysts', Desalination, 249 (3), 1017-1021. 50. Zou, Z.G., Ye, J.H., Sayama, K. and Arakawa, H. (2001), 'Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst', Nature, 414 (6864), 625-627. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62571 | - |
dc.description.abstract | 化石燃料日漸枯竭,研發與推動新能源技術刻不容緩,其中,氫能源是現階段被認為最具潛力的替代能源,使用後唯一產物即為水,然而,如何生產、儲存、輸送氫能源仍為目前一項重要的挑戰。近年來,許多研究利用光觸媒分解水產氫,其中雙觸媒系統又稱為Z型反應,是一種利用兩種光觸媒進行水分解產氫的系統,在系統中加入產氫觸媒及產氧觸媒,分別進行產氫及產氧的反應,相較於單純置入產氫觸媒的單觸媒系統而言,可提升水的分解效率。亦有研究指出,甲酸能夠有效的儲存氫氣並擔任電洞捕捉劑,延緩電子、電洞對再結合。因此本研究為提升二氧化鈦光觸媒之甲酸溶液分解產氫效率,將其製備為奈米鈦管並批覆上硫化鎘及貴重金屬鉑,硫化鎘可有效的轉移吸收光譜至可見光區,而鉑可提高觸媒活性、延長電子電洞對分開的周期,將此改質之產氫觸媒與產氧觸媒氧化鎢置於甲酸溶液中進行產氫研究。
常溫下以150 W可見光燈管催化10 vol%甲酸溶液,以0.2 g產氫觸媒與0.2 g產氧觸媒置於200 mL甲酸溶液中為本研究之最佳觸媒劑量比例。雙觸媒系統之CdS/TiO2+WO3於10 vol%甲酸溶液中,高出僅加入CdS/TiO2之單觸媒系統將近九倍。相較於TiO2,TNTs之高比表面積可使較多CdS批覆於其上,其產氫效率為115.5 μmol.h-1,大約為CdS/TiO2+WO3的四倍。而以CdS/TNTs+WO3為觸媒進行甲酸濃度的探討,可發現以20 vol%甲酸溶液擁有最高的產氫效率,產氫效率可達247.8 μmol.h-1。利用無電電鍍法批覆Pt之0.01 wt%Pt/CdS/TNTs與WO3於20 vol%甲酸溶液中具有最好的產氫效率,高達852.5 μmol.h-1。 | zh_TW |
dc.description.abstract | Hydrogen gas is one of the most promising renewable energy nowadays and the final product of hydrogen combustion is nothing but water. However, it is still a big challenge to produce hydrogen gas and store it. Therefore, many researches have been conducted to produce hydrogen from water using photocatalysts. The Z-scheme photocatalysis is a two-photocatalyst system that comprised H2-catalyst and O2-catalyst to produce hydrogen and oxygen, respectively. Comparing to one step system, the two step system could promote the efficiency of water splitting. On the other hand, formic acid has been seemed as a convenient hydrogen-storage material recently and can be safely handled in aqueous solution.
Therefore, this study investigated the photocatalytic conversion of formic acid solution to hydrogen gas using visible light (150 W, 350 < λ < 800 nm) with several types of H2-catalysts (CdS/TNTs, CdS/TiO2, Pt/CdS/TNTs, Pt/CdS/TiO2) and WO3 as the O2-catalyst. The optimum photocatalysts doses in the solution were investigated first and the results showed that the best doses were 0.2 g H2-catalysts and 0.2 g O2-catalyst in 200 mL solution. The hydrogen production with 10 vol% formic acid solution over CdS/TiO2+WO3 (two step system) was 30.2 μmol.h-1, which is about nine times higher than that with CdS/TiO2’s (one step system). Due to the high specific surface area of TNTs, more CdS could be attached onto the TNTs surface than to with that of TiO2’s, so the yield of hydrogen is much higher with CdS/TNTs+WO3 than CdS/TiO2+WO3. The hydrogen production with CdS/TNTs+WO3 achieved 115.5 μmol.h-1, which is about four times higher than that with CdS/TiO2+WO3. This study also investigated the optimum concentration of formic acid and the results showed that the hydrogen production with 20 vol% formic acid solution over CdS/TNTs+WO3 achieved 247.8 μmol.h-1, which is the highest. Moreover, coating of metal ions onto the photocatalysts could further promote the reaction. In this study, Pt coated onto CdS/TNTs was prepared by electroless plating in order to reduce recombination of holes and electrons. Results showed that the optimum amounts of metal was 0.01 wt%, which hydrogen production achieved 852.5 μmol.h-1 with 20 vol% formic acid solution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:04:42Z (GMT). No. of bitstreams: 1 ntu-102-R00541110-1.pdf: 8322740 bytes, checksum: 010016507fd59c21f2c822d576de3cb0 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 總目錄
誌謝 I 中文摘要 III Abstract V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究目的 2 1.3研究內容 2 第二章 文獻回顧 3 2.1氫氣的製備 3 2.2甲酸之物化特性 5 2.3光觸媒催化原理 6 2.3.1二氧化鈦 7 2.3.2氧化鈦奈米管 8 2.4二氧化鈦的改質 9 2.4.1添加其他種半導體 10 2.4.2添加金屬 12 2.5 光催化水分解系統 13 2.5.1單觸媒反應系統 13 2.5.2雙觸媒反應系統 14 第三章 材料與方法 17 3.1藥品與設備 17 3.2材料製備 21 3.3甲酸溶液光催化反應 23 3.4分析 24 3.4.1觸媒特性分析 24 3.4.2氫氣定量分析與中間產物檢測 27 第四章 結果與討論 29 4.1光觸媒材料特性鑑定 29 4.1.1掃描式電子顯微鏡觀察 (SEM) 30 4.1.2穿透式電子顯微鏡觀察 (TEM) 36 4.1.3廣角X 光粉末繞射儀 (XRD) 37 4.1.4紫外光-可見光光譜儀 (UV-Vis) 39 4.2光催化反應實驗 41 4.2.1空白實驗 41 4.2.2單觸媒系統與雙觸媒系統實驗結果比較 43 4.2.3觸媒劑量效應 46 4.2.4甲酸濃度選擇 48 4.2.5鉑金屬披覆效應 49 4.3甲酸降解 51 4.4光催化反應機制 55 4.5產氫結果比較 63 第五章 結論與建議 65 5.1結論 65 5.2建議 66 參考文獻 67 附錄 75 | |
dc.language.iso | zh-TW | |
dc.title | 以硫化鎘奈米鈦管與氧化鎢進行可見光催化甲酸溶液分解產氫之研究 | zh_TW |
dc.title | Hydrogen Production from Formic Acid Solution by CdS/TNTs and WO3 under Visible Light Irradiation | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張慶源,劉雅瑄 | |
dc.subject.keyword | 氫氣,Z型反應,奈米鈦管,硫化鎘,鉑,氧化鎢,甲酸, | zh_TW |
dc.subject.keyword | Hydrogen,Z-scheme,Titanate nanotubes,Cadium sulfide,Platinum,Tungsten trioxide,Formic acid, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-06-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 8.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。