請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6256
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李後晶 | |
dc.contributor.author | Tzu-Chun Lu | en |
dc.contributor.author | 陸子鈞 | zh_TW |
dc.date.accessioned | 2021-05-16T16:24:18Z | - |
dc.date.available | 2015-09-02 | |
dc.date.available | 2021-05-16T16:24:18Z | - |
dc.date.copyright | 2013-09-02 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-20 | |
dc.identifier.citation | Abuhakima, R. (1981). Vitellogenin Synthesis Induced in Locust Fat-Body by Juvenile-Hormone Analog Invitro. Experientia, 37(12), 1309-1311.
Adams, M. D., Dubnick, M., Kerlavage, A. R., Moreno, R., Kelley, J. M., Utterback, T. R., Nagle, J. W., Fields, C., & Venter, J. C. (1992). Sequence Identification of 2,375 Human Brain Genes. Nature, 355(6361), 632-634. doi: Doi 10.1038/355632a0 Altincicek, B., Knorr, E., & Vilcinskas, A. (2008). Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. Dev Comp Immunol, 32(5), 585-595. doi: Doi 10.1016/J.Dci.2007.09.005 Antonio, D. S. M., Guidugli-Lazzarini, K. R., do Nascimento, A. M., Simoes, Z. L. P., & Hartfelder, K. (2008). RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Naturwissenschaften, 95(10), 953-961. doi: Doi 10.1007/S00114-008-0413-9 Arakane, Y., Hogenkamp, D. G., Zhu, Y. C., Kramer, K. J., Specht, C. A., Beeman, R. W., Kanost, M. R., & Muthukrishnan, S. (2004). Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology, 34(3), 291-304. doi: Doi 10.1016/J.Ibmb.2003.11.004 Arrese, E. L., & Soulages, J. L. (2010). Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol, 55, 207-225. doi: 10.1146/annurev-ento-112408-085356 Belles, X. (2010). Beyond Drosophila: RNAi In Vivo and Functional Genomics in Insects. Annu Rev Entomol, 55, 111-128. doi: Doi 10.1146/Annurev-Ento-112408-085301 Belles, X., Casas, J., Messeguer, A., & Piulachs, M. D. (1987). Invitro Biosynthesis of Jh-Iii by the Corpora Allata of Adult Females of Blattella-Germanica (L). Insect Biochemistry, 17(7), 1007-1010. Burand, J. P., & Hunter, W. B. (2013). RNAi: Future in insect management. Journal of Invertebrate Pathology, 112, S68-S74. doi: Doi 10.1016/J.Jip.2012.07.012 Chang, H. W., & Lee, H. J. (2001). Inconsistency in the expression of locomotor and ERG circadian rhythms in the German cockroach, Blattella germanica (L.). Arch Insect Biochem Physiol, 48(3), 155-166. doi: 10.1002/arch.1068 Chiang, A. S., & Schal, C. (1994). Cyclic Volumetric Changes in Corpus Allatum Cells in Relation to Juvenile-Hormone Biosynthesis during Ovarian Cycles in Cockroaches. Arch Insect Biochem Physiol, 27(1), 53-64. doi: Doi 10.1002/Arch.940270107 Ciudad, L., Belles, X., & Piulachs, M. D. (2007). Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol, 8, 53. doi: 10.1186/1471-2199-8-53 Ciudad, L., Piulachs, M. D., & Belles, X. (2006). Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. (Vol 273, pg 325, 2006). Febs Journal, 273(3), 671-671. Comas, D., Piulachs, M. D., & Belles, X. (2000). Vitellogenin of Blattella germanica (L.) (Dictyoptera, Blattellidae): Nucleotide sequence of the cDNA and analysis of the protein primary structure. Arch Insect Biochem Physiol, 45(1), 1-11. doi: Doi 10.1002/1520-6327(200009)45:1<1::Aid-Arch1>3.3.Co;2-F Comas, D., Piulachs, M. D., & Belles, X. (2001). Induction of vitellogenin gene transcription in vitro by juvenile hormone in Blattella germanica. Mol Cell Endocrinol, 183(1-2), 93-100. Cooper, R. A., & Schal, C. (1992). Effects of Protein Type and Concentration on Development and Reproduction of the German-Cockroach, Blattella-Germanica. Entomologia Experimentalis Et Applicata, 63(2), 123-134. Cooper, R. A., & Schal, C. (1992). Differential Development and Reproduction of the German-Cockroach (Dictyoptera, Blattellidae) on 3 Laboratory Diets. Journal of Economic Entomology, 85(3), 838-844. Cusson, M., Yagi, K. J., Guan, X. C., & Tobe, S. S. (1992). Assessment of the Role of Cyclic-Nucleotides in Allatostatin-Induced Inhibition of Juvenile-Hormone Biosynthesis in Diploptera-Punctata. Mol Cell Endocrinol, 89(1-2), 121-125. Degliesposti, M., Devries, S., Crimi, M., Ghelli, A., Patarnello, T., & Meyer, A. (1993). Mitochondrial Cytochrome-B - Evolution and Structure of the Protein. Biochimica Et Biophysica Acta, 1143(3), 243-271. Deitsch, K. W., Chen, J. S., & Raikhel, A. S. (1995). Indirect Control of Yolk Protein Genes by 20-Hydroxyecdysone in the Fat-Body of the Mosquito, Aedes-Aegypti. Insect Biochemistry and Molecular Biology, 25(4), 449-454. Dellacioppa, G., & Engelmann, F. (1984). Phospholipid-Synthesis in the Fat-Body Endoplasmic-Reticulum during Primary and Secondary Juvenile-Hormone Stimulation of Vitellogenesis in Leucophaea-Maderae. Wilhelm Rouxs Archives of Developmental Biology, 193(2), 78-85. Diatchenko, L., Lau, Y. F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D., & Siebert, P. D. (1996). Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America, 93(12), 6025-6030. doi: Doi 10.1073/Pnas.93.12.6025 Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K., & Dickson, B. J. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448(7150), 151-156. doi: 10.1038/nature05954 Dong, Y., & Friedrich, M. (2005). Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. Bmc Biotechnology, 5. doi: Artn 25 Doi 10.1186/1472-6750-5-25 Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi: 10.1038/35888 Gadot, M., Burns, E., & Schal, C. (1989). Juvenile-Hormone Biosynthesis and Oocyte Development in Adult Female Blattella-Germanica - Effects of Grouping and Mating. Arch Insect Biochem Physiol, 11(3), 189-200. doi: Doi 10.1002/Arch.940110306 Galzie, Z., Kinsella, A. R., & Smith, J. A. (1997). Fibroblast growth factors and their receptors. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 75(6), 669-685. doi: Doi 10.1139/Bcb-75-6-669 Gore, J. C., & Schal, C. (2004). Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera : Blattellidae). Journal of Medical Entomology, 41(5), 953-960. Gore, J. C., & Schal, C. (2005). Expression, production and excretion of Bla g 1, a major human allergen, in relation to food intake in the German cockroach, Blattella germanica. Medical and Veterinary Entomology, 19(2), 127-134. doi: Doi 10.1111/J.0269-283x.2005.00550.X Huvenne, H., & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. Journal of Insect Physiology, 56(3), 227-235. doi: Doi 10.1016/J.Jinsphys.2009.10.004 Irles, P., Belles, X., & Piulachs, M. D. (2009). Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization. BMC Genomics, 10, 206. doi: 10.1186/1471-2164-10-206 Kennerdell, J. R., & Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95(7), 1017-1026. doi: Doi 10.1016/S0092-8674(00)81725-0 Khalil, S. M. S., Anspaugh, D. D., & Roe, R. M. (2006). Role of juvenile hormone esterase and epoxide hydrolase in reproduction of the cotton bollworm, Helicoverpa zea. Journal of Insect Physiology, 52(7), 669-678. Lee, C. M., Su, M. T., & Lee, H. J. (2009). Pigment Dispersing Factor: An Output Regulator of the Circadian Clock in the German Cockroach. Journal of Biological Rhythms, 24(1), 35-43. Lee, H. J., & Wu, Y. L. (1994). Mating Effects on the Feeding and Locomotion of the German-Cockroach, Blattella-Germanica. Physiological Entomology, 19(1), 39-45. doi: Doi 10.1111/J.1365-3032.1994.Tb01071.X Liang, D. S., & Schal, C. (1994). Neural and Hormonal-Regulation of Calling Behavior in Blattella-Germanica Females. Journal of Insect Physiology, 40(3), 251-258. Lin, T. M., & Lee, H. J. (1996). The expression of locomotor circadian rhythm in female German cockroach, Blattella germanica (L). Chronobiology International, 13(2), 81-91. doi: Doi 10.3109/07420529609037072 Lin, T. M., & Lee, H. J. (1998). Parallel control mechanisms underlying locomotor activity and sexual receptivity of the female German cockroach, Blattella germanica (L.). Journal of Insect Physiology, 44(11), 1039-1051. doi: Doi 10.1016/S0022-1910(98)00069-9 Lum, L., Yao, S., Mozer, B., Rovescalli, A., Von Kessler, D., Nirenberg, M., & Beachy, P. A. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science, 299(5615), 2039-2045. doi: 10.1126/science.1081403 Maestro, J. L., & Belles, X. (2006). Silencing allatostatin expression using double-stranded RNA targeted to preproallatostatin mRNA in the German cockroach. Arch Insect Biochem Physiol, 62(2), 73-79. doi: Doi 10.1002/Arch.20123 MartÍN, David, Piulachs, Maria-Dolors, & BellÉS, Xavier. (1995). Patterns of haemolymph vitellogenin and ovarian vitellin in the German cockroach, and the role of Juvenile Hormone. Physiological Entomology, 20(1), 59-65. doi: 10.1111/j.1365-3032.1995.tb00801.x Martin, D., Piulachs, M. D., & Belles, X. (1996). Inhibition of vitellogenin production by allatostatin in the German cockroach. Mol Cell Endocrinol, 121(2), 191-196. Martinezgonzalez, J., & Hegardt, F. G. (1995). Characterization of a Cdna-Encoding a Cytosolic Peptidylprolyl Cis-Trans-Isomerase from Blattella-Germanica. European Journal of Biochemistry, 234(1), 284-292. doi: Doi 10.1111/J.1432-1033.1995.284_C.X Mcdougall, G. E., & Steele, J. E. (1988). Free Fatty-Acids as a Source of Energy for Trehalose Synthesis in the Fat-Body of the American Cockroach (Periplaneta-Americana). Insect Biochemistry, 18(6), 591-597. doi: Doi 10.1016/0020-1790(88)90011-X Panaitof, S. C., & Scott, M. P. (2006). Effect of juvenile hormone on vitellogenin gene expression in the fat body of burying beetles, Nicrophorus orbicollis. Arch Insect Biochem Physiol, 63(2), 82-91. doi: 10.1002/arch.20144 Pridgeon, J. W., & Liu, N. (2003). Overexpression of the cytochrome c oxidase subunit I gene associated with a pyrethroid resistant strain of German cockroaches, Blattella germanica (L.). Insect Biochemistry and Molecular Biology, 33(10), 1043-1048. doi: Doi 10.1016/S0965-1748(03)00120-6 Pridgeon, J. W., Zhang, L., & Liu, N. N. (2003). Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene, 314, 157-163. doi: Doi 10.1016/S0378-1119(03)00725-X Robich, R. M., Rinehart, J. P., Kitchen, L. J., & Denlinger, D. L. (2007). Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. Journal of Insect Physiology, 53(3), 235-245. doi: Doi 10.1016/J.Jinsphys.2006.08.008 Roseler, P. F., & Roseler, I. (1988). Influence of Juvenile-Hormone on Fat-Body Metabolism in Ovariolectomized Queens of the Bumblebee, Bombus-Terrestris. Insect Biochemistry, 18(6), 557-563. doi: Doi 10.1016/0020-1790(88)90007-8 Schal, C., & Chiang, A. S. (1995). Hormonal-Control of Sexual Receptivity in Cockroaches. Experientia, 51(9-10), 994-998. Schal, C., Holbrook, G. L., Bachmann, J. A. S., & Sevala, V. L. (1997). Reproductive biology of the German cockroach, Blattella germanica: Juvenile hormone as a pleiotropic master regulator. Arch Insect Biochem Physiol, 35(4), 405-426. doi: Doi 10.1002/(Sici)1520-6327(1997)35:4<405::Aid-Arch5>3.0.Co;2-Q Scharrer, B. (1987). Insects as Models in Neuroendocrine Research. Annu Rev Entomol, 32, 1-16. Schluns, H., & Crozier, R. H. (2007). Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Molecular Biology, 16(6), 753-759. Seitz, V., Clermont, A., Wedde, M., Hummel, M., Vilcinskas, A., Schlatterer, K., & Podsiadlowski, L. (2003). Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol, 27(3), 207-215. Sokolove, Phillip G., & Bushell, Wayne N. (1978). The chi square periodogram: Its utility for analysis of circadian rhythms. Journal of Theoretical Biology, 72(1), 131-160. doi: http://dx.doi.org/10.1016/0022-5193(78)90022-X Suazo, A., Gore, C., & Schal, C. (2009). RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption. Insect Molecular Biology, 18(6), 727-736. doi: Doi 10.1111/J.1365-2583.2009.00912.X Suren-Castillo, S., Abrisqueta, M., & Maestro, J. L. (2012). FoxO inhibits juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochemistry and Molecular Biology, 42(7), 491-498. doi: Doi 10.1016/J.Ibmb.2012.03.006 Suzuki, Y., Truman, J. W., & Riddiford, L. M. (2008). The role of broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development, 135(3), 569-577. doi: Doi 10.1242/Dev.015263 Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J. L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D. P., Crava, C. M., de Maagd, R. A., Duvic, B., Erlandson, M., Faye, I., Felfoldi, G., Fujiwara, H., Futahashi, R., Gandhe, A. S., Gatehouse, H. S., Gatehouse, L. N., Giebultowicz, J. M., Gomez, I., Grimmelikhuijzen, C. J., Groot, A. T., Hauser, F., Heckel, D. G., Hegedus, D. D., Hrycaj, S., Huang, L., Hull, J. J., Iatrou, K., Iga, M., Kanost, M. R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P. J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantinou, M., Popadic, A., Rajam, M. V., Saenko, S., Simpson, R. M., Soberon, M., Strand, M. R., Tomita, S., Toprak, U., Wang, P., Wee, C. W., Whyard, S., Zhang, W., Nagaraju, J., Ffrench-Constant, R. H., Herrero, S., Gordon, K., Swevers, L., & Smagghe, G. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 57(2), 231-245. doi: 10.1016/j.jinsphys.2010.11.006 Tian, L., Guo, E., Wang, S., Liu, S., Jiang, R. J., Cao, Y., Ling, E., & Li, S. (2010). Developmental regulation of glycolysis by 20-hydroxyecdysone and juvenile hormone in fat body tissues of the silkworm, Bombyx mori. J Mol Cell Biol, 2(5), 255-263. doi: 10.1093/jmcb/mjq020 Tobe, S. S., & Stay, B. (1985). Structure and Regulation of the Corpus Allatum. Advances in Insect Physiology, 18, 305-432. Treiblmayr, K., Pascual, N., Piulachs, M. D., Keller, T., & Belles, X. (2006). Juvenile hormone titer versus juvenile hormone synthesis in female nymphs and adults of the German cockroach, Blattella germanica. J Insect Sci, 6, 1-7. doi: 10.1673/031.006.4301 Tsai, C. W., & Lee, H. J. (2000). Circadian locomotor rhythm masked by the female reproduction cycle in cockroaches. Physiological Entomology, 25(1), 63-73. doi: Doi 10.1046/J.1365-3032.2000.00165.X Ursic-Bedoya, R. J., & Lowenberger, C. A. (2007). Rhodnius prolixus: Identification of immune-related genes up-regulated in response to pathogens and parasites using suppressive subtractive hybridization. Dev Comp Immunol, 31(2), 109-120. doi: Doi 10.1016/J.Dci.2006.05.008 Vogel, H., Badapanda, C., & Vilcinskas, A. (2011). Identification of immunity-related genes in the burying beetle Nicrophorus vespilloides by suppression subtractive hybridization. Insect Molecular Biology, 20(6), 787-800. doi: Doi 10.1111/J.1365-2583.2011.01109.X Wiens, A. W., & Gilbert, L. I. (1965). Regulation of cockroach fat-body metabolism by the corpus cardiacum in vitro. Science, 150(3696), 614-616. Wojchowski, D. M., Parsons, P., Nordin, J. H., & Kunkel, J. G. (1986). Processing of Pro-Vitellogenin in Insect Fat-Body - a Role for High-Mannose Oligosaccharide. Developmental Biology, 116(2), 422-430. doi: Doi 10.1016/0012-1606(86)90143-0 Xu, W. N., & Han, Z. J. (2008). Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci, 8. Yu, N., Christiaens, O., Liu, J. S., Niu, J. Z., Cappelle, K., Caccia, S., Huvenne, H., & Smagghe, G. (2013). Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science, 20(1), 4-14. doi: Doi 10.1111/J.1744-7917.2012.01534.X Yu, Q., Lin, T. H., Feng, G. Z., Yang, K., & Pang, Y. (2008). Functional analysis of the putative antiapoptotic genes, p49 and iap4, of Spodoptera litura nucleopolyhedrovirus with RNAi. Journal of General Virology, 89, 1873-1880. doi: Doi 10.1099/Vir.0.2008/001008-0 Zhang, C., & Xia, Y. (2009). Identification of genes differentially expressed in vivo by Metarhizium anisopliae in the hemolymph of Locusta migratoria using suppression-subtractive hybridization. Curr Genet, 55(4), 399-407. doi: 10.1007/s00294-009-0254-x Zhou, X. G., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008). RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38(8), 805-815. Zhu, J. S., Busche, J. M., & Zhang, X. (2010). Identification of juvenile hormone target genes in the adult female mosquitoes. Insect Biochemistry and Molecular Biology, 40(1), 23-29. doi: Doi 10.1016/J.Ibmb.2009.12.004 Zhu, Y., Johnson, T. J., Myers, A. A., & Kanost, M. R. (2003). Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem Mol Biol, 33(5), 541-559. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6256 | - |
dc.description.abstract | 德國蜚蠊(Blattella germanica)雌蟲的發育、生殖及行為受到體內青春激素濃度的調控。本研究即利用青春激素類似物-烯蟲酯(methoprene)施用於三日齡的雌成蟲,並藉由抑制消除雜合技術(Suppression Subtractive Hybridization, SSH),找出施用烯蟲酯後特殊表現的基因。雜合後的cDNA資料庫,包含20個特殊表現的基因片段,這些基因潛在受到青春激素濃度調控。與線上資料庫比對的結果,其中9個基因片段,其中功能各涉及卵巢發育、能量補給、蛋白產物合成、細胞分裂、解毒等,另外有11個基因則功能未知。功能已知的16號基因,和能量調控有關,但尚未有更詳細的研究;再加上三個功能未知的基因,共四個基因,由進一步研究得到更多資訊。藉由即時聚合酶連鎖反應(real-time PCR)技術,確認這四個基因受到青春激素誘發表現,也顯示在不同日齡的雌蟲間有不同的表現量;此外,在不同器官也有不同表現量,暗示著可能各有不同功能。由於過去研究發現,青春激素濃度會間接調控德國蜚蠊雌蟲的日週律動以及卵巢發育,因此我們也藉由RNAi技術,測試這四個基因是否屬於調控日週律動或卵巢發育的調控因子。結果顯示,注射雙股RNA後,四個基因的表現量降低,其中三個基因BGME02、BGME05及BGME16的表現量被抑制之後,卵巢的發育減緩,但日週律動卻無明顯差異。因此我們認為這三個基因是青春激素下游調控卵巢發育的基因,但不直接調控雌蟲的日週律動。 | zh_TW |
dc.description.abstract | Juvenile hormone (JH) is the major hormone controlling the development, behavior and reproductive cycles of the female German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). In this study, JH analog - methoprene was topically applied on 3-day old females before with Suppression Subtractive Hybridization (SSH) to identify the genes that were particularly expressed. The SSH cDNA library composed with 20 distinctive sequences of genes. Nine of those genes were involved in ovarial development, energy supply, protein synthesis, cell division or detoxification, and rest of genes possessed unknown functions. For functional studies, RNAi was used to knock-down the expression level of four genes, and dsBGME02, dsBGME05 and dsBGME16 injection inhibit ovary development, but RNAi of all four genes do not affect the locomotor rhythmicity. Based on these findings, we found three genes, which are BGME02, BGME05 and BGME16 mediated by JH downstream regulation and ovary development, but do not participated in control of locomotion. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:24:18Z (GMT). No. of bitstreams: 1 ntu-102-R98632015-1.pdf: 2606769 bytes, checksum: d94a827fb8e44d6e2ad5e1b8485020a3 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents v List of Tables vii List of Figures viii Introduction 1 Materials and Methods 5 Insect culture 5 Methoprene application 5 Total RNA extraction 5 Gene expression comparison and cDNA library construction. 6 Gene Cloning 6 RNA interference 7 Quantification of mRNA 8 Results 9 Suppression Subtractive Hybridization 9 Methoprene application induce the expression of 4 target genes 10 Daily fluctuation of expression level of 4 target genes 11 Expression level of the target genes in internal organs 12 RNAi reduce gene expression levels 13 RNAi inhibit the Development of Ovary 14 RNAi affect the locomotor activity 17 Discussion 18 References 22 Appendix 34 Primer list 34 Sequences of gene fragments obtained via SSH in female German cockroaches after topical application of methoprene (juvenile hormone analog). 36 Sequences of gene fragments obtained via SSH reverse operation (methoprene application as driver, acetone application as tester). 41 | |
dc.language.iso | en | |
dc.title | 青春激素誘發德國蜚蠊雌蟲基因表現之分析 | zh_TW |
dc.title | Analysis of genes upregulated by juvenile hormone in the female German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳美娥,李琦玫,張俊哲 | |
dc.subject.keyword | 德國蜚蠊,青春激素,日週律動,RNAi,抑制消除雜合法, | zh_TW |
dc.subject.keyword | Blattella germanica,Circadian rhythm,Juvenile Hormone (JH),RNAi,Suppression Subtractive Hybridization, | en |
dc.relation.page | 41 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 2.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。