Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋家驥(Chia-Chi Sung)
dc.contributor.authorChao-Yang Liuen
dc.contributor.author劉朝陽zh_TW
dc.date.accessioned2021-06-16T16:04:08Z-
dc.date.available2016-07-08
dc.date.copyright2013-07-08
dc.date.issued2013
dc.date.submitted2013-06-27
dc.identifier.citation1. S. Giddey, F.T. Ciacchi, S.P.S. Badwal, V. Zelizko, J.H. Edwards, G.J. Duffy, “A versatile polymer electrolyte membrane fuel cell (3 kWe) facility.”, Solid State Ionics, vol. 152, pp. 363–371, 2000
2. N.M. Sammes, R. Boersma, “Small-scale fuel cells for residential applications.”, J. Power Sources, vol. 86, pp. 98-110, 2000
3. H.P. Bennetto, J.L. Stirling, K. Tanaka, C.A. Vega, “Anodic reactions in microbial fuel-cells.”, Biotechnol. Bioeng., vol. 25, pp. 559-568, 1983
4. E. Ticianelli, C. Derouin, A. Redondo, S. Srinivasan, “Methods to advance technology of proton-exchange membrane fuel-cells.”, J. Electrochem. Soc., vol. 135, pp. 2209-2214, 1988
5. S. Sharma, B.G. Pollet, “Support materials for PEMFC and DMFC eletrocatalysts – A review.”, J. Power Sources, vol. 208, pp. 96-119, 2012
6. N. Sammes, Fuel Cell Technology: Reaching Towards Commercialization, Springer, London, 2006
7. A. Hermann, T. Chaudhuri, P. Spagnol, “Bipolar plates for PEM fuel cells: A review.”, Int. J. Hydrogen Energy, vol. 30, pp. 1297-1302, 2005
8. R. Hui, J.O. Berghaus, C. Deces-Petit, W. Qu, S. Yich, J.G. Legoux, et al. “High performance metal-supported solid oxide fuel cells fabricated by thermal spray.”, J. Power Sources, vol. 191, pp. 371-376, 2009
9. S. Molin, M. Gazda, P. Jasinski, “High temperature oxidation of porous alloys for solid oxide feul cell applications.”, Solid State Ionics, vol. 181, pp. 1214-1220, 2010
10. B.H. Liu, Z.P. Li, “Current status and progress of direct borohydride fuel cell technology development.”, J. Power Sources, vol. 1987, pp. 291-297, 2009
11. W. Yuam, Y. Tang, X.J. Yang, Z.P. Wan, “Porous metal materials for polymer electrolyte membrane fuel cells – A review.”, vol. 94, pp. 309-329, 2012
12. http://www.nedstack.com/technology/fuel-cell-types
13. http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html
14. F. Barbir, “PEM fuel cells: theory and practice.”, (Academic Press, London, UK, 2005)
15. http://www.g-energy.com.my/fuel_cell_tech_PEMFC.html
16. http://electrochem.cwru.edu/encycl/art-f04-fuel-cells-pem.htm
17. O.F. Selamet, F. Becerikli, M.D. Mat, Y. Kaplan, “Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack.”, Int. J. Hydrogen Energy, vol. 36, pp. 11480-11487, 2011
18. K.B. Prater, “Solid polymer fuel-cell developments at Ballard.”, J. Power Sources, vol. 37, pp. 181-188, 1992
19. P. Beckhaus, M. Mokupil, A. Heinzel, S. Souzani, C. Spotta, “On-board fuel cell power supply for sailing yachts.”, J. Power Sources, vol. 145, pp. 639-643, 2005
20. W.G. Colella, “Market prospects, design features, anal performance of a fuel cell-powered scooter.”, J. Power Sources, vol. 86, pp. 255-260, 2000
21. J.J. Hwang, D.Y. Wang, N.C. Shih, “Development of a lightweight fuel cell vehicle.”, J. power Sources, vol. 141, pp. 108-115, 2005
22. J.J. Hwang, D.Y. Wang, N.C. Shih, D.Y. Lai, C.K. Chen, “Development of fuel-cell-powered electric bicycle.”, J. power Sources, vol. 133, pp. 223-228, 2004
23. http://www.hnei.hawaii.edu/research/hydrogen
24. P. Millet, F. Andolfatto, R. Durand, “Design and performance of a solid polymer electrolyte water electrolyzer.”, Int. J. Hydrogen Energy, vol. 21, pp. 87-93, 1996
25. M. Tsypkin, E. Lyutikova, V. Fateev, V. Rusanov, “Catalytic layers in a reversible system comprising an electrolyzing cell and a fuel cell based on solid polymer electrolyte.”, Russian J. Electrochem., vol. 36, pp. 545-548, 2000
26. R.J. Davenport, F.H. Schubert, “Space water electrolysis – space station through advanced missions.”, J. Power Sources, vol. 36, pp. 235-250, 1991
27. F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources.”, Sol. Energy, vol. 78, pp. 661-669, 2005
28. K. Darowicki, J. Orlikowski, ”Impedance investigations of the mechanism of oxygen evolution on composite electrodes.”, J. Electrochem. Soc. vol. 146, pp. 663-668, 1999
29. L.A. Da Silva, V.A. Alves, S. Trasatti, J.F.C. Boodts, “Surface and electrocatalytic properties of ternary oxides Ir0.3-Ti0.7x-PtxO2. Oxygen evolution from acidic solution.”, J. Electroanal. Chem. vol. 427, pp. 97-104, 1997
30. S.P.S. Badwal, S. Giddey, F.T. Ciacchi, “Hydrogen and oxygen generation with polymer electrolyte membrane (PEM)-based electrolytic technology.”, Ionics, vol. 12, pp. 7-14, 2006
31. Z.G. Shao, B.L. Yi, M. Han, “Bifunctional electrodes with a think catalyst layer for ‘unitized’ proton exchange membrane regenerative fuel cell.”, J. Power Sources, vol. 79, pp. 82-85, 1999
32. J. Prakash, D.A. Tryk, W. Aldred, E.B. Yeager, “Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes.”, J. Appl. Electrochem., vol. 29, pp. 1463-1469, 1999
33. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, “IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells.”, J. Appl. Electrochem., vol. 31, pp. 1179-1183, 2001
34. G.Y. Chen, D.A. Delafuente, S. Sarangapani, T.E. Mallouk, “Combinatorial discovery of bifunctional oxygen reduction-water oxidation electrocatalysts for regenerative fuel cells.”, Catalysis Today, vol. 67, pp. 341-355, 2001
35. E.Rasten, G. Hagen, R. Tunold, “Electrocatalysis in water electrolysis with solid polymer electrolyte.”, Electrochim. Acta, vol. 48, pp. 3945-3952, 2003
36. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, “Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis.”, Electrochim. Acta, vol. 52, pp. 3889-3894, 2007
37. J.O’M. Bockris, “Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen.”, J. Chem. Phys. Vol. 24, pp. 817-827, 1956
38. A. Damjanovic, A. Dey, J.O’M. Bockris, “Kinetics of oxygen evolution and dissolution on platinum electrodes.”, Electrochim. Acta, vol. 11, pp. 791-814, 1966
39. L.A. De Faria, J.F.C. Boodts, S. Trasatti, “ Electrocatalytic properties of Ru+Ti+Ce mixed oxide electrodes for the Cl-2 evolution reaction.”, Electrochim. Acta, vol. 42, pp. 3525-3530, 1997
40. S.D. Song, H.M. Zhang, X.P. Ma, Z.G. Shao, Y.N. Zhang, B.L. Yi, “Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell.”, Electrochem. Commun., vol. 8, pp. 399-405, 2006
41. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/metal_hydrides.html
42. M.L. Christian, K.-F. Aguey-Zinsou, “Core-Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH4.”, ACS Nano, vol. 6, pp. 7739-7751, 2012
43. J. Yang, A. Sudik, C. Wolverto, D.J. Siegel, “High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.”, Chem. Soc. Rev. vol. 39, pp. 656-675, 2010
44. http://neel.cnrs.fr/spip.php?article1281&lang=en
45. C. Carpetis, W. Peschka, “A study on hydrogen storage by use of cryoadsorbents.”, Int. J. Hydrogen Energy, vol. 5, pp. 539-554, 1980
46. http://www.hbank.com.tw
47. P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etie’vant, “PEM water electrolyzers: from electrocatalysis to stack development.”, Int. J. Hydrogen Energy, vol. 35, pp. 5043-5052, 2010
48. F. Marangio, M. Pagani, M. Santarelli, M. Cali, “Concept of a high pressure PEM electrolyser prototype.”, Int. J. Hydrogen Energy, vol. 36, pp. 7807-7815, 2011
49. F. Marangio, M. Santarelli, M. Cali, Int. J. Hydrogen Energy, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production.”, vol. 34, pp. 1143-1158, 2009
50. S.A. Grigoriev, V.I. Porembskiy, S.V. Korobtsev, V.N. Fateev, A. Aupretre, P. Millet, “High-pressure PEM water electrolysis and corresponding safety issues.”, Int. J. Hydrogen Energy, vol. 36, pp. 2721-2728, 2011
51. P. Medina, M. Santarelli, “Analysis of water transport in a high pressure PEM electrolyzer.”, Int. J. Hydrogen Energy, vol. 35, pp. 5173-5186, 2010
52. M. Armandi, D. Drago, M. Pagani, B. Bonelli, M. Santarelli, “Direct coupling of H2 production through a high pressure PEM electrolyzer and its storage by physisorption on microporous materials.”, Int. J. Hydrogen Energy, vol. 37, pp. 1292-1300, 2012
53. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, “Novel titanium foam for bone tissue engineering.”, J. Mater. Res., vol. 17, pp. 2633-2639, 2002
54. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, M. Mabuchi, “Fabrication and characterization of autogenous titanium foams.”, European Cells and Materials, vol. 1, pp. 61-62, 2001
55. http://www.xastgs.com/
56. E. Richard et al., U.S. Patent No. 3,853,738, 1974
57. J.N. Hryn et al., U.S. Patent No. 6,083,362, 2000
58. http://www.zyworld.com.tw/index.php?action=prod_detail&p_id=33
59. C.H. Chen, T.Y. Chen, C.W. Cheng, R.G. Peng, “An experimental study on micro proton exchange membrane fuel cell.”, J. Fuel Cell Sci. and Technol., vol. 9, pp. 031001-1-031001-6, 2012
60. J. Xuan, Y.C. Leung, K.H. Leung, M. Ni, H. Wang, “A computational study of bifunctional oxygen electrode in air-breathing reversible microfluidic fuel cells.”, Int. J. Hydrogen Energy, vol. 36, pp. 9231-9241, 2011
61. M. Srinivasarao, D. Bhattacharyya, R. Rengaswamy, “Optimization studies of a polymer electrolyte membrane fuel cell with multiple catalyst layers.”, J. Power Sources, vol. 206, pp. 197-203, 2012
62. A. Ohma, T. Mashio, K. Sata, H. Iden, Y. Ono, K. Sakai, K. Akizuki, S. Takaichi, K. Shinohara, “Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan.”, Electrochim. Acta, vol. 56, pp. 10832-10841, 2011
63. I. Khazaee, M. Ghazikhani, “The effect of material properties on the performance of a new geometry PEM fuel cell.”, Heat Mass Transfer, vol.48, pp. 799-807, 2012
64. U. Thanganathan, J. Parrondo, B. Rambabu, “Alternative proton-conducting electrolytes and their electrochemical performances.”, J. Solid State Electrochem., vol. 16, pp. 2151-2158, 2012
65. R. Tirnovan, S. Giurgea, “Efficiency improvement of a PEMFC power source by optimization of the air management.”, Int. J. Hydrogen Energy, vol. 37, pp. 7745-7756, 2012
66. H.S. Park, Y.H. Cho, Y.H. Cho, C.R. Jung, J.H. Jang, Y.E. Sung, “Performance enhancement of PEMFC through temperature control in catalyst layer fabrication.”, Electrochim. Acta, vol. 53, pp. 763-767, 2007
67. B.G. Pollet, “The use of ultrasound for the fabrication of fuel cell materials.”, Int. J. Hydrogen Energy, vol. 35, pp. 11986-12004, 2010
68. H. Tang, S. Wang, S.P. Jiang, M. Pan, “A comparative study of CCM and hot-pressed MEAs for PEM fuel cells.”, J. Power Sources, vol. 170, pp. 140-144, 2007
69. L.L. Sun, R. Ran, G.X. Wang, Z.P. Shao, “Fabrication and performance test of a catalyst-coated membrane from direct spray deposition.”, Solid State Ionics, vol. 179, pp. 960-965, 2008
70. S. Towne, V. Viswanathan, J. Holbery, P. Rieke, “Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology.”, J. Power Sources, vol. 171, pp. 575-584, 2007
71. A.D. Taylor, E.Y. Kim, V.P. Humes, J. Kizuka, L.T. Thompson, “Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells.”, J. Power Sources, vol. 171, pp. 101-106, 2007
72. B. Millington, V. Whipple, B.G. Pollet, “A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique.”, J. Power Sources, vol. 196, pp. 8500-8508, 2011
73. B.G. Pollet, “A novel method for preparing PEMFC electrodes by the ultrasonic and sonoelectrochemical techniques.”, Electrochem. Commun., vol. 11, pp. 1445-1448, 2009
74. J.Z. Zhang, K. Hongsirikarn, J.G. Goodwin Jr., “Effect and siting of Nafion in a Pt/C proton exchange membrane fuel cell catalyst.”, J. Power Sources, vol. 196, pp. 7957-7966, 2011
75. W.M. Liu, Y. Xie, J.G. Liu, X. Jie, J. Gu, Z.G. Zou, “Experimental study of proton exchange membrane fuel cells using Nafion 212 and Nafion 211 for portable application at ambient pressure and temperature conditions.”, Int. J. Hydrogen Energy, vol. 37, pp. 4673-4677, 2012
76. K.H. Kim, K.Y. Lee, H.J. Kim, E. Cho, S.Y. Lee, T.H. Lim, S.P. Yoon, I.C. Hwang, J.H. Jang, “The effects of Nafion ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method.”, Int. J. Hydrogen Energy, vol. 35, pp. 2119-2126, 2010
77. C. Bois, A. Blayo, D. Chaussy, R. Vincent, A.G. Mercier, C. Nayoze, “Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure.”, Fuel Cells, vol. 12, pp. 199-211, 2012
78. A. Ignaszak, C.J. Song, W.M. Zhu, J.J. Zhang, A. Bauer, R. Baker, V. Neburchilov, S.Y. Ye, S. Campbell, “Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells.”, Electrochim., Acta, vol. 69, pp. 397-405, 2012
79. X.S. Zhao, W. Li, Y.Z. Fu, A. Manthiram, “Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC.”, Int. J. Hydrogen Energy, vol. 37, pp. 9845-9852, 2012
80. O.B. Mathilde, B.F. Sandrine, B. Christian, C. Marian, J. Nathalie, S. Mohamed, A. Patrick, “Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode.”, Int. J. Hydrogen Energy, vol. 37, pp. 9742-9757, 2012
81. K.Wikander, H. Ekstrom, A.E.C. Palmqvist, G. Lindbergh, “On the influence of Pt particle size on the PEMFC cathode performance.”, Electrochim. Acta, vol. 52, pp. 6848-6855, 2007
82. R. Roshandel, B. Farhanieh, “The effects of non-uniform distribution of catalyst loading on polymer electrolyte membrane fuel cell performance.”, Int. J. Hydrogen Energy, vol. 32, 4424-4437, 2007
83. S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, T.H. Lee, “Effects of Nafion impression on performances of PEMFC electrodes.”, Electrochim. Acta, vol. 43, pp. 3693-3701, 1998
84. L.M. Pant, S.K. Mitra, M. Secanell, “Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers.”, J. Power Sources, vol. 206, pp. 153-160, 2012
85. M.J. Martinez-Rodriguez, T. Cui, S. Shimpalee, S. Seraphin, B. Duong, J.W. Van Zee, “Effect of microporous layer on MacMullin number of carbon paper gas diffusion layer.”, J. Power Sources, vol. 207, pp. 91-100, 2012
86. N. Zamel, J. Becker, A. Wiegmann, “Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells.”, J. Power Sources, vol. 207, pp. 70-80, 2012
87. Y. Shi, S. Cheng, S.H. Quan, “Fractal-based theoretical model on saturation and relative permeability in the gas diffusion layer of polymer electrolyte membrane fuel cells.”, J. Power Sources, vol. 209, pp. 130-140, 2012
88. P. Chippar, K. O, K.M. Kang, H.C. Ju, “A numerical investigation of the effects of GDL compression and intrusion in polymer electrolyte fuel cells (PEFCs).”, Int. J. Hydrogen Energy, vol. 37, pp. 6326-6338, 2012
89. S. Escribano, J.F. Blachot, J. Etheve, A. Morin, R. Mosdale, “Characterization of PEMFCs gas diffusion layers properties.”, J. Power Sources, vol. 156, pp. 8-13, 2006
90. J.H. Lin, W.H. Chen, Y.J. Su, T.H. Ko, “Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell.”, Fuel, vol. 87, pp. 2420-2424, 2008
91. Z.G. Zhan, J.S. Xiao, Y.S. Zhang, M. Pan, R.Z. Yuan, “Gas diffusion through differently structured gas diffusion layers of PEM fuel cells.”, Int. J. Hydrogen Energy, vol. 32, pp. 4443-4451, 2007
92. K.R. Cooper, M. Smith, “Electrical test methods for on0line fuel cell ohmic resistance measurement.”, J. Power Sources, vol. 160, pp. 1088-1095, 2006
93. H.J. Lee, M.K. Cho, Y.Y. Jo, K.S. Lee, H.J. Kim, E. Cho, S.K. Kim, D. Henkensmeier, T.H. Lim, J.H. Jang, “Application of TGA techniques to analyze the compositional and structural degradation of PEMFC MEAs.”, Polymer Degradation and Stability, vol. 97, pp. 1010-1016, 2012
94. A.C. Olesen, T. Berning, S.K. Kaer, “The effect of Inhomogeneous compression on water transport in the cathode of a proton exchange membrane fuel cell.”, J. Fuel Cell Sci. and Technol., vol. 9, pp. 031010-1-031010-7, 2012
95. T.L. Liu, C. Pan, “Visualization and back pressure analysis of water transport through gas diffusion layers of proton exchange membrane fuel cell.”, J. Power Sources, vol. 207, pp. 60-69, 2012
96. C.Y. Jung, H.S. Shim, S.M. Koo, S.H. Lee, S.C. Yi, “Investigations of the temperature distribution in proton exchange membrane fuel cells.”, Applied Energy, vol. 93, pp. 733-741, 2012
97. B.T. Huang, Y. Chatillon, C. Bonnet, F. Lapicque, S. Leclerc, M. Hinaje, S. Rael, “Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC part 1: study of high RH cycling test with air RH at 62%.100%.”, Fuel Cells, vol. 12, pp. 335-346, 2012
98. S.J. Bae, S.J. Kim, J.I. Park, C.W. Park, J.H. Lee, I. Song, N. Lee, K.B. Kim, J.Y. Park, “Lifetime prediction of a polymer membrane fuel cell via an accelerated startup-shutdown cycle test.”, Int. J. Hydrogen Energy, vol. 37, pp. 9775-9781, 2012
99. S. Kundu, M.W. Fowler, L.C. Simon, R. Abouatallah, N. Beydokhti, “Degradation analysis and modeling of reinforced catalyst coated membranes operated under OCV conditions.”, J. Power Sources, vol. 183, pp. 619-628, 2008
100. http://www2.dupont.com/FuelCells/en_US/products/nafion.html
101. http://en.wikipedia.org/wiki/Nafion
102. http://www.torayca.com/en/index.html
103. http://www.ce-tech.com.tw/chinese/GDL-04.html
104. D.P. Wilkinson, G.J. Lamont, H.H. Voss, C. Schwab, “Method of fabricating an embossed fluid flow field plate.”, U.S. Patent No. 5,527,363, 1996
105. MatWeb Materials Properties Data, http://www.matweb.com
106. S. Pandiyan, A. Elayaperumal, N. Rajalakshmi, K.S. Dhathathreyan, N. Venkateshwaran, “Design and analysis of a proton exchange membrane fuel cells (PEMFCs).”, Renewable Energy, vol. 49, pp. 161-165, 2013
107. C.H. Lin, S.Y. Tsai, “An investigation of coated aluminium bipolar plates for PEMFC”, Applied Energy, vol. 100, pp. 87-92, 2012
108. C. Turan, O.N. Cora, M. Koc, “Contact resistance characteristics of coated metallic bipolar plates for PEM fuel cells – investigations on the effect of manufacturing.”, Int. J. Hydrogen Energy, vol. 37, pp. 18187-18204, 2012
109. C.K. Lee, “Electroless Ni–Cu–P/nano-graphite composite coatings for bipolar plates of proton exchange membrane fuel cells.”, J. Power Sources, vol. 220, pp. 130-137, 2012
110. Y. Yang, L.J. Guo, H.T. Liu, “Factors affecting corrosion behavior of SS316L as bipolar plate material in PEMFC cathode environments.”, Int. J. Hydrogen Energy, vol. 37, pp. 13822-13828, 2012
111. P.Y. Yi, L.F. Peng, X.M. Lai, M.T. Li, J. Ni, “Investigation of sintered stainless steel fiber felt as gas diffusion layer in proton exchange membrane fuel cells.”, Int. J. Hydrogen Energy, vol. 37, pp. 11334-11344, 2012
112. L.X. Wang, J.C. Sun, P.B. Li, B. Jing, S. Li, Z.S. Wen, S.J. Ji, “Niobized AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell.”, J. Power Sources, vol. 208, pp. 397-403, 2012
113. K.M. Kim, S.N. Kim, J.H. Kim, Y.Y. Lee, K.Y. Kim, “Study on surface topography of 446M stainless steel as a bipolar plate on interfacial contact resistance of polymer electrolyte membrane fuel cell.”, J. Power Sources, vol. 220, pp. 42-46, 2012
114. S.S. Kocha, J.D. Yang, J.S. Yi, “Characterization of gas crossover and its applications in PEM fuel cells.”, AIChE J., vol. 52, pp. 1916-1925, 2006
115. H.K. Lee, J.I. Kim, J.H. Park, T.H. Lee, “A study on self-humidifying PEMFC using Pt-Zr-Nafion composite membrane.”, Electrochim. Acta, vol. 50, pp. 761-768, 2004
116. http://www.fuelcellmarkets.com/products_and_services/3,1,617,17,28418.html?subsite=617&language=1
117. M.S. Wilson, U.S. Patent No. 5,211,984, 1993
118. S.Y. Cha, W.M. Lee, “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface.”, J. Electrochem. Soc., vol. 146, pp. 4055-4060, 1999
119. S. Litster, G. Mclean, “PEM fuel cell electrodes.”, J. Power Sources, vol. 130, pp. 61-76, 2004
120. C.Y. Liu, L.H. Hu, C.C. Sung, “Micro-protective layer for lifetime extension of solid polymer electrolyte water electrolysis.”, J. Power Sources, vol. 207, pp. 81-85, 2012
121. Y.J. Zhang, C. Wang, N.F. Wan, Z.X. Liu, Z.Q. Mao, “Study on a novel manufacturing process of membrane electrode assemblies for solid polymer electrolyte water electrolysis.”, Electrochem. Commun., vol. 9, pp. 667–670, 2007
122. R.J. Davenport, F.H. Schubet, “Space water electrolysis: space station through advanced missions.”, J. Power Sources, vol. 36, pp. 235–250, 1991
123. R. Pe˜na-Alonso, A. Sicurelli, E. Callone, G. Carturan, R. Raj, “A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells.”, J. Power Sources, vol. 165, pp. 315–323, 2007
124. L. Hu, R. Ceccato, R. Raj, “Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts.”, J. Power source, vol. 196, pp. 69–75, 2011
125. L. Hu, R. Ceccato, R. Raj, “Superefficient thin film multilayer catalyst for generating hydrogen from sodium borohydride.”, J. Power Sources, vol. 196, pp. 741–746, 2011
126. D.V. Goia, “Preparation of monodispersed metal particles.”, New J. Chem., vol. 22, pp. 1203–1215, 1998
127. U.B. Demirci, F. Garin, “Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate.”, J. Alloys Compd., vol. 463, pp. 107-111, 2008
128. U.B. Bemirci, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, P. Miele, “Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell.”, Fuel Cells, vol. 10, pp. 335–350, 2010
129. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis,
VCH, New York, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62544-
dc.description.abstract氫氣是最乾淨也是最豐富的燃料,亦被稱為下一個世代的能源,因地球表面有百分之七十的面積是水,而水的組成就是氫氣跟氧氣。燃料電池是將氫氣與氧氣直接從化學能轉換成電能,效率可高達60%以上,比傳統的汽油內燃機發電效率高上許多,且這反應過程中,產生的只有水、電與熱。燃料電池於1950年代就已經被美國重度發展,並應用於提供太空梭,於2007年前後,燃料電池車已經可以在北美租賃了,距離取代傳統引擎來降低二氧化碳排放的日子已經越來越近了。可是,現今氫氣的來源有百分之九十以上都是從提煉石化燃料所產生的副產物,這對於要推廣綠色能源是相當矛盾的。所以,從水中取得氫氣是最直接也是取得純度最高的方式 - 純水電解產氫。SPE (Solid Polymer Electrolyte) or PEM (Proton Exchange Membrane) 膜式電解是效率最高也是最乾淨,其特點之一是可將氫氣與氧氣獨立分開,避免氫氧混和造成危險,而其產生的氫氣與氧氣純度可高達99.99%以上。但是,在電解反應過程中,容易對氧氣端的氣體擴散層或電極造成腐蝕及氧化作用,加速其性能的衰退。使用壽命對商用化是相當重要的,故我們找到適當的觸媒得以大大延長電極衰退時間,並進階強化純水電解電池結構,提高氫氣出口壓力,得以做更多的應用。
這篇論文的主要目的在於研究開發領先國內學術與業界的技術,從頭到尾都是我們自己設計與製作。先使用既有的燃料電池的架構 – PEM燃料電池,先驗證我們塗佈的膜電極組穩定性,之後進一步應用於PEM純水電解電池。使用貴金屬微保護層塗佈於碳製的氣體擴散層上,應用於常壓氫氣出口的PEM純水電解電池,保護氧氣端電極避免被腐蝕,使此PEM純水電解產氫電池得以壽命延長。更因應近年開發成功的合金粉末儲氫罐的及純水電解產氫的趨勢,強化純水電解結構設計,使新結構設計的高壓純水電解產氫電池壓力可以達到10 bar,能直接將產生的氫氣儲存到儲氫罐中,加上內部關鍵元件的升級,使用新的微保護層觸媒組合 (IrO2 / Ta2O5),達到更穩定的性能表現。
首先開發製作燃料電池的心臟 - 膜電極組,並測試其製程的穩定性及性能是否與文獻可以比較 ; 待燃料電池的膜電極組已有相當穩定性後, 進而開發純水電解產氫的膜電極組。選用不含碳基材的白金與氧化銥觸媒,調配特定比例的Nafion,塗佈於質子交換膜上。待純水電解產氫膜電極組製程穩定後,針對延長氣體擴散層則使用1層的貴金屬微保護層,簡化製程並降低時間與成本,而該層貴金屬微保護層可以將純水電解產氫的過程中,將氧氣端所產生的活性氧原子催化成無害的氧氣。經過長久的實驗證實,在常壓氫氣出口的純水電解產氫電池操作於高電流密度 (1.4 A cm-2)下,使用1層微保護層的膜電極組與沒有微保護層的相比,壽命延長了10倍以上,操作時數亦超過2000個小時。甚至,為了更多的應用,氫氣需要被儲存是未來的趨勢,所以電池結構需要提升並具有耐壓的能力,才能對應也在發展的儲氫罐。為了強化電池結構,我們利用台灣卓越的CNC加工技術,將水流道與集電板結合,減少組裝元件以降低於高壓力操作環境下,水電解電池漏氣的風險,同時也可以簡化組裝的步驟。經實驗證實,氫氣出口壓力可以達到至少10 bar,可直接將氫氣填充到金屬粉末儲氫罐中;而基於前一個實驗,經過長時間測試所得到微保護層的效用,新的微保護層可讓耐高壓的純水電解產氫電池穩定的連續操作超過600小時,其電壓震盪幅度不超過0.02 V。
zh_TW
dc.description.abstractHydrogen is the cleanest and most sufficient fuel on earth and also called the energy of the next generation. Fuel cells convert the chemical energy into electricity, generating only heat and water. The proton exchange membrane fuel cell (PEMFC) is one type of fuel cells and has been regarded as one of the most promising alternative power sources due to its low emissions and high efficiency which can achieve more than 60%. However, 90% of hydrogen we use today is obtained from petroleum products. To solve the global warming issue, every country plans to reduce the usage of gasoline. Pure water electrolysis with a proton exchange membrane (PEM) or solid polymer electrolyte (SPE) is the most effective and the cleanest method to produce hydrogen. The purity of hydrogen could achieve 99.99% because only de-ionized water (DI water) is used. However, a challenging problem for PEM water electrolysers is the corrosion and oxidation to the gas diffusion layer at anode side by active oxygen species (such as oxygen atoms and hydroxyl free radicals) during the reaction of water electrolysis. For the use of hydrogen fuel in a wide range of applications, high-pressure water electrolysers are owing to the pre-storage of hydrogen. In recent years, some studies have developed low-pressure hydrogen storage by metal hydrides, metal-organics, and carbon nanotubes. The minimum pressure to store hydrogen has been reduced to 10 bar or below. PEM water electrolysers have to provide high enough of hydrogen outlet pressure to store hydrogen directly into the hydrogen storage tank for more applications.
The first purpose of this study is to extend the lifetime of the PEM water electrolyser. We repeat the process of catalyst coated membrane (CCM) fabrication to get uniform performances for PEM fuel cells. After that, a carbon-made gas diffusion layer (GDL) is coated a noble metal (IrO2) micro protective layer (MPL) to replace the micro porous layer, normally uses carbon black (XC-72). The functions of the MPL are used to transform active oxygen species into harmless oxygen gas and to prevent the carbon-made GDL from corrosion and oxidation during water electrolysis.
The second purpose is to increase the outlet pressure of hydrogen of the high pressure PEM water electrolyser up to 10 bar. Our design is to combine the current collector and the flow field plate into one single component which is carried out by the mature computer numerical control (CNC) technique. For the lifetime extension, the MPL is working based on previous study. The advanced MPL is coated on the titanium porous disc with IrO2 / Ta2O5 composition. The titanium porous disc is used to replace the carbon-made GDL to support the thin membrane and prevent it from rupturing when operating at high pressures and stabilize the performance of the high pressure PEM water electrolyser when operating at high current density.
We verify the noble metal MPL coated on carbon-made GDL can effectively extend the lifetime of the ambient pressure PEM water electrolyser more than 2000 h when operating at high current density (1.4 A cm-2) that is 10 times longer than that of a commercial sample coated only with carbon black as the micro porous layer. Moreover, the innovative structure of the high pressure PEM water electrolyser successfully eliminates the sealing risk of assembly and can operate at 10 bar of hydrogen outlet pressure and achieve a lifetime of over 600 h with the advanced MPL. The high pressure PEM water electrolyser with an advanced stabilizing MPL (IrO2 / Ta2O5 composition) remains the voltage within 0.02 V which shows excellent stability at high current density (1 A cm-2).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:04:08Z (GMT). No. of bitstreams: 1
ntu-102-D99525002-1.pdf: 2317689 bytes, checksum: 2bc40778bf5ca9b838186dcc4ab790df (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝.......................................................................................................................I
摘要.......................................................................................................................III
Abstract.................................................................................................................V
Content……………………………………………………………………….…VIII
List of Figures……….………………………………..……………………………X
List of Tables……………………………………………………………………XVI
Chapter 1 Introduction..................................................................................................1
1.1 Research Motivation.......................................................................................1
1.2 Dissertation Contents.....................................................................................3
Chapter 2 Theory..........................................................................................................5
2.1. Background and Basic Reactions..................................................................5
2.1.1 Proton Exchange Membrane Fuel Cells……….….………………...…..5
2.1.2 Ambient Pressure Proton Exchange Membrane Water Electrolyser…..11
2.1.3 High Pressure Proton Exchange Membrane Water Electrolyser……15
2.2 Main Components and Raw Materials Properties ............................................19
Chapter 3 Experiments……………………………………………………..…………..29
3.1 Membrane Electrode Assembly (MEA) Fabrication.........................................29
3.1.1 Catalyst Ink Preparation………….........................................................29
3.1.2 Catalyst Coated Membrane (CCM)........................................................32
3.1.3 Gas Diffusion Electrode (GDE)........................................................35
3.2 Micro Protective Layer for PEM Water Electrolysers..………………………36
3.3 Simplified Structural Design for High Pressure Cell..………………………40
3.4 Experimental Set-up..........................................................................................43
3.4.1 Proton Exchange Membrane Fuel Cells……….………….…………..43
3.4.2 Proton Exchange Membrane Water Electrolysers…………………...46
Chapter 4 Results and Discussion...................................................................................47
4.1 Proton Exchange Membrane Fuel Cells……….……………………………..47
4.1.1 Performances of Uniform Samples.........................................................47
4.1.2 Performances of CCM and GDE Comparison.......................................48
4.1.3 Optimal Combination of Flow Field Channels, Gas Diffusion Layers, and Catalyst Layers..............................................................................50
4.1.4 Performances of assembly under different torques (5, 10, 15, 20, 25, 30
Kgfcm)…………………………………….…………………….……54
4.2 Ambient Pressure Proton Exchange Membrane Water Electrolyser..….…..57
4.2.1 SEM and EDX analysis of the Micro Protective Layer..........................57
4.2.2 Current Density-Voltage Polarization Curve.........................................59
4.2.3 Lifetime Test...........................................................................................60
4.3 High Pressure Proton Exchange Membrane Water Electrolyser..…………...64
4.3.1 SEM and EDX analysis of the Advanced Micro Protective Layer........64
4.3.2 Current Density-Voltage Polarization Curve.........................................66
4.3.3 Pressure-Voltage Curve..........................................................................68
4.3.4 Lifetime Test...........................................................................................69
Chapter 5 Conclusions.....................................................................................................71
References……...............................................................................................................74
dc.language.isoen
dc.subject膜電極組zh_TW
dc.subject純水電解zh_TW
dc.subject膜式電解zh_TW
dc.subject微保護層zh_TW
dc.subject高壓產氫zh_TW
dc.subject質子交換膜zh_TW
dc.subject燃料電池zh_TW
dc.subjectwater electrolysisen
dc.subjectproton exchange membraneen
dc.subjectmembrane electrode assemblyen
dc.subjectPEM fuel cellen
dc.subjectPEM water electrolyseren
dc.subjectmicro protective layeren
dc.subjecthigh pressureen
dc.title使用貴金屬微保護層延長操作壽命及耐高壓力結構強化設計應用於優化純水電解產氫電池zh_TW
dc.titleImprovements of lifetime extension with a noble metal micro protective layer and high pressure structure design for a water electrolytic hydrogen production cellen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee韋文誠,吳文中,李坤彥,方建舜,林群耀
dc.subject.keyword質子交換膜,膜電極組,燃料電池,純水電解,膜式電解,微保護層,高壓產氫,zh_TW
dc.subject.keywordproton exchange membrane,membrane electrode assembly,PEM fuel cell,PEM water electrolyser,micro protective layer,high pressure,water electrolysis,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2013-06-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved