請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62539
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹承礎(Seng-Cho Chou) | |
dc.contributor.author | Ya-Wen Tsou | en |
dc.contributor.author | 鄒雅雯 | zh_TW |
dc.date.accessioned | 2021-06-16T16:04:03Z | - |
dc.date.available | 2025-07-15 | |
dc.date.copyright | 2020-07-15 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-06-08 | |
dc.identifier.citation | [1] Niklaus, C., Cetto, M., Freitas, A., & Handschuh, S. 2018. A survey on open information extraction. arXiv preprint arXiv:1806.05599.
[2] Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2Nd Edition). Prentice-Hall, Inc.,Upper Saddle River, NJ, USA. [3] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broadhead, and Oren Etzioni. 2007. Open information extraction from the web. In Proceedings of the 20th International Joint Conference on Artifical Intelligence, pages 2670–2676, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. [4] Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren Etzioni. 2012. Open language learning for information extraction. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 523–534, Jeju Island, Korea, July. Association for Computational Linguistics. [5] Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying relations for open information extraction. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1535–1545, Edinburgh, Scotland, UK., July. Association for Computational Linguistics. [6] Luciano Del Corro and Rainer Gemulla. 2013. Clausie: Clause-based open information extraction. In Proceedings of the 22Nd International Conference on World Wide Web, pages 355–366, New York, NY, USA. ACM. [7] Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. 2017, September. Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1643-1647). IEEE. [8] Hsu, S. H., Hsieh, J. P. A., Chih, T. C., & Hsu, K. C. 2009. A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression. Expert Systems with Applications, 36(4), 7947-7951. [9] Ding, X., Zhang, Y., Liu, T., & Duan, J. 2015, June. Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence. [10] Ou, J. A., & Penman, S. H. 1989. Financial statement analysis and the prediction of stock returns. Journal of accounting and economics, 11(4), 295-329. [11] Beneish, M. D., Lee, C. M., & Tarpley, R. L. 2001. Contextual fundamental analysis through the prediction of extreme returns. Review of Accounting Studies, 6(2-3), 165-189. [12] Zhang, J., Cui, S., Xu, Y., Li, Q., & Li, T. 2018. A novel data-driven stock price trend prediction system. Expert Systems with Applications, 97, 60-69. [13] Henrique, B. M., Sobreiro, V. A., & Kimura, H. 2018. Stock price prediction using support vector regression on daily and up to the minute prices. The Journal of finance and data science, 4(3), 183-201. [14] Dash, R., & Dash, P. K. 2016. A hybrid stock trading framework integrating technical analysis with machine learning techniques. The Journal of Finance and Data Science, 2(1), 42-57. [15] Eugene F Fama 1965. The behavior of stock-market prices. The journal of Business, 38(1):34–105. [16] Bing, L., Chan, K. C., & Ou, C. 2014, November. Public sentiment analysis in Twitter data for prediction of a company's stock price movements. In 2014 IEEE 11th International Conference on e-Business Engineering (pp. 232-239). IEEE. [17] Ding, X., Zhang, Y., Liu, T., & Duan, J. 2014, October. Using structured events to predict stock price movement: An empirical investigation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1415-1425). [18] Ding, X., Zhang, Y., Liu, T., & Duan, J. 2015, June. Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence. [19] Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. 2016, June. Deep learning for stock prediction using numerical and textual information. In 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) (pp. 1-6). IEEE. [20] Deng, S., Mitsubuchi, T., Shioda, K., Shimada, T., & Sakurai, A. 2011, December. Combining technical analysis with sentiment analysis for stock price prediction. In 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (pp. 800-807). IEEE. [21] Ince, H., & Trafalis, T. B. (2007). Kernel principal component analysis and support vector machines for stock price prediction. Iie Transactions, 39(6), 629-637. [22] Xiong, R., Nichols, E. P., & Shen, Y. (2015). Deep learning stock volatility with google domestic trends. arXiv preprint arXiv:1512.04916. [23] Stanovsky, G., & Dagan, I. 2016, November. Creating a large benchmark for open information extraction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 2300-2305). [24] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. [25] Radinsky, K., Davidovich, S., & Markovitch, S. (2012, April). Learning causality for news events prediction. In Proceedings of the 21st international conference on World Wide Web (pp. 909-918). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62539 | - |
dc.description.abstract | 近年來,資訊技術慢慢滲透進傳統金融業,運用科技手段使得金融服務更有效率,並且發展許多創新的服務,其中機器人理財為自動化的投資顧問,自動提供客戶理財相關的資訊及建議,為了能提供機器人理財更精確的資訊,推播給客戶更完善、適合的投資組合,本篇研究將對股價進行預測,尋找適合的買點及賣點,基於Eugene F Fama (1965)所提出之金融市場為資訊有效的( Informationally Efficient ),因此使用消息面之資訊,取得美國路透社以及華爾街日報之新聞資料,對台灣加權指數進行股價漲跌預測。為從龐大之新聞資料中擷取重要事件,引進開放資訊擷取( Open Information Extraction )概念,並基於Divide-and-Conquer演算法之概念,提出全新的事件擷取方式,更完整的擷取出新聞事件。爾後訓練自動編碼器( AutoEncoder )模型,學習事件參與者與事件關係間的語義關聯,根據此模型從事件矩陣中萃取出特徵向量,達到事件嵌入( Event Embedding )之效果。之後依據事件向量建立深度學習模型,考量新聞事件對股價市場之影響並非短短一兩天,因此使用過往一個月之新聞事件對股價漲跌進行預測,為要處理時間序列之資料,因此建立長短期記憶神經網路( Long Short-Term Memory Network, LSTM )。此外,為衡量事件嵌入以及長短期神經網路之表現,建立文字嵌入以及極限梯度提升模型( XGBoost )進行比較,實驗結果顯示不論是在牛市亦是熊市之市場趨勢下,本篇研究所提出之方法表現皆較佳,且只需使用最簡單之交易策略進行模擬交易,便可得到不錯之報酬。 | zh_TW |
dc.description.abstract | In recent years, information technology has slowly penetrated into the traditional financial industry, using technology to make financial services more efficient and develop more innovative services. Among them, Robo-advisor is an automated investment consultant, automatically providing customers with financial information and advice. In order to provide more accurate information with Robo-advisor, this research will build a deep learning model, based on the news resources obtained from Reuters and the Wall Street Journal, to predict the stock price rise and fall of the Taiwan Weighted Index, hoping to find suitable buying and selling points. In order to extract important events from huge news data, the concept of Open Information Extraction is introduced. We propose a new event extraction method, based on the concept of Divide-and-Conquer algorithm, to more accurately extract news event. Afterwards, an AutoEncoder model is trained to learn the semantic pattern between event participants and event relationships. According to this model, feature vectors are extracted from the event matrix to achieve the effect of event embedding. After that, considering the impact of news events on the stock market as a long-term effect, a deep learning model, a long short-term memory neural network, is built using news events from the past month. In addition, in order to measure the performance of event embedding and long short-term neural networks, a word embedding and extreme gradient boosting model (XGBoost) was established for comparison. The experimental results show whether in the bull market or bear market, the methods we proposed perform well, and only need to use the simplest trading strategy for market simulation, we can get a good reward. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:04:03Z (GMT). No. of bitstreams: 1 ntu-109-R07725019-1.pdf: 2716398 bytes, checksum: d4684adbd8ce9f2ec43179da9179892c (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 第一章 緒論 1
1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究對象與範圍 2 1.4 研究流程與論文架構 2 第二章 文獻探討 5 2.1 股價預測 5 2.2 開放資訊擷取( Open Information Extraction ) 8 第三章 研究方法 13 3.1 資料集說明 13 3.2 事件擷取( Event Extraction ) 13 3.3 事件嵌入( Event Embedding ) 21 3.4 深度學習模型 25 第四章 研究結果 28 4.1 本篇提出之Open IE表現 28 4.2 實驗設定 28 4.3 驗證結果( Validation Results ) 30 4.4 測試結果( Testing Results ) 35 4.5 牛市與熊市之測試結果 38 第五章 總結與未來研究方向 41 5.1 總結 41 5.2 未來研究方向 41 第六章 參考文獻 42 | |
dc.language.iso | zh-TW | |
dc.title | 基於長短期記憶神經網路以新聞事件進行股價預測 | zh_TW |
dc.title | News Event-Driven Stock Prediction Based on Long Short-Term Memory Network | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧信銘(Hsin-Min Lu),陳文國(Wen-Kuo Chen) | |
dc.subject.keyword | 長短期記憶神經網路,開放資訊擷取,股價預測,自動編碼器,事件擷取, | zh_TW |
dc.subject.keyword | Long Short-Term Memory Network,AutoEncoder Model,Open Information Extraction,Event Embedding,Event Extraction,Stock Prediction, | en |
dc.relation.page | 45 | |
dc.identifier.doi | 10.6342/NTU202000961 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-06-09 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。