請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯俊成(Chiun-Cheng Ko),朱國瑞(Kwo-Ray Chu) | |
| dc.contributor.author | Yu-Fang Tsai | en |
| dc.contributor.author | 蔡有方 | zh_TW |
| dc.date.accessioned | 2021-05-11T04:45:01Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.available | 2021-05-11T04:45:01Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | Ahmed J, Ramaswamy HS, Raghavan VGS. 2007. Dielectric properties of Indian Basmati rice flour slurry. J Food Eng 80:1125-1133.
Alcázar J, Oehlrich D. 2010. Recent applications of microwave irradiation to medicinal chemistry. Future Med Chem 2:169-176. Alfaifi B, Wang S, Tang J, Rasco B, Sablani S, Jiao Y. 2013. Radio frequency disinfestation treatments for dried fruit: Dielectric properties. LWT - Food Sci Technol 50:746-754. Alpay YO, Kilincel M, Sen N. 2017. A novel approach to evaluate the heating performance of a radio frequency oven. Int J Mech Prod Eng 5:149-152. Banik S, Bandyopadhyay S, Ganguly S. 2003. Bioeffects of microwave––a brief review. Bioresource Technol 87:155-159. Barbosa DReS, da Silva Fontes L, Silva PRR, Neves JA, de Melo AF, Esteves Filho AB. 2017. Microwave radiation to control Callosobruchus maculatus (Coleoptera: Chrysomelidae) larvae in cowpea cultivars. Austral Entomol 56:70-74. Barnett LR, Chang LH, Chen HY, Chu KR, Lau WK, Tu CC. 1989. Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube. Phys Rev Lett 63:1062-1065. Carpenter RL, Livstone EM. 1971. Evidence for nonthermal effects of microwave radiation_abnormal development of irradiated insect pupae. IEEE Trans Microw Theory Tech 19:173-178. Catalkaya I, Kent S. 2012. Analysis of multiple wedges electromagnetic wave absorbers. Prog Electromagn Res M 26:1-9. Chang TH, Barnett LR, Chu KR, Tai F, Hsu CL. 1999. Dual-function circular polarization converter for microwave/plasma processing systems. Rev Sci Instrum 70:1530-1534. Chen L, Guo H, Chen H-Y, Tsao M-H, Yang T-T, Tsai Y-C, Chu KR. 2000. An extended interaction oscillator based on a complex resonator structure. IEEE Trans Plasma Sci, 28:626-632. Chiang WY, Wu MH, Wu KL, Lin MH, Teng HH, Tsai YF, Ko CC, Yang EC, Jiang JA, Barnett LR, Chu KR. 2014. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber. Rev Sci Instrum 85:084703. Chung H-T, Chuah B-K. 2003. Modeling of RF absorber for application in the design of anechoic chamber. Prog Electromagn Res 43:273-285. Das I, Kumar G, Shah NG. 2013. Microwave Heating as an Alternative Quarantine Method for Disinfestation of Stored Food Grains. Int J Food Sci 2013:926468. DeWitt BT, Burnside WD. 1988. Electromagnetic scattering by pyramidal and wedge absorber. IEEE Trans Antennas Propag 36:971-984. Emerson W. 1973. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans Antennas Propag 21:484-490. Fields PG. 1992. The control of stored- product insects and mites with extreme temperatures. J Stored Prod Res 28:89-118. Frings H. 1952. Factors determining the effects of radio-frequency electromagnetic fields and materials they infest. J Econ Entomol 45:396-408. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP. 1998. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213-223. Gamage TV, Sanguansri P, Swiergon P, Eelkema M, Wyatt P, Leach P, Alexander DLJ, K. K. 2015. Continuous combined microwave and hot air treatment of apples for fruit fly (Bactrocera tryoni and B. jarvisi) disinfestations. Innov Food Sci Emerg Technol 29:261-270. Gilmour AS. 1986. Microwave Tubes. Dedham, MA, Artech House, 1986, 502 p. Halverson SL, Bigelow TS, Plarre R, Philips TW. 1998. Engineering design of high-power microwave applicators for stored product protection. Proceedings of the 7th International Working Conference on Stored-product Protection 2:1570-1575. Halverson SL, Burkholder WE, Bigelow TS, Nordheim EV, Misenheimer ME. 1996. High-power microwave radiation as an alternative insect control method for stored products. J Econ Entomol 89:1638-1648. Halverson SL, Phillips TW, Bigelow TS, Mbata GN, Payton ME. 1999. The control of various species of stored-product insects with EHF energy. Proceeding of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. pp 54-51-54-54. Holloway CL, DeLyser RR, German RF, McKenna P, Kanda M. 1997. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans Electromagn Compat 39:33-47. Hou L, Johnson JA, Wang S. 2016. Radio frequency heating for postharvest control of pests in agricultural products: A review. Postharvest Bio Technol 113:106-118. Jackson JD. 1998. Classical Electrodynamics. 3rd edition. Wiley New York. 832pp. Janaswamy R. 1992. Oblique scattering from lossy periodic surfaces with applications to anechoic chamber absorbers. IEEE Trans Antennas Propag 40:162-169. Jian F, Jayas DS, White NDG, Fields PG, Howe N. 2015. An evaluation of insect expulsion from wheat samples by microwave treatment for disinfestation. Biosystems Eng 130:1-12. Jiao S, Johnson JA, Tang J, Wang S. 2012. Industrial-scale radio frequency treatments for insect control in lentils. J Stored Prod Res 48:143-148. Jiao Y, Shi H, Tang J, Li F, Wang S. 2015. Improvement of radio frequency (RF) heating uniformity on low moisture foods with Polyetherimide (PEI) blocks. Food Res Intl 74:106-114. Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ. 2002. Microwave heating application in environmental engineering - a review. Resource Conserv Recycl 34:75-90. Kim KB, Kim JH, Lee SS, Noh SH. 2002. Measurement of grain moisture content using microwave attenuation at 10.5 GHz and moisture density. IEEE Trans Instrum Meas 51:72-77. Kirkpatrick RL, Roberts JRJ. 1971. Insect control in wheat by use of microwave energy. J Econ Entomol 64:950-951. Kraus M, Holzer F, Hoyer C, Trommler U, Kopinke FD, Roland U. 2018. Chemical-Free Pest Control by Means of Dielectric Heating with Radio Waves: Selective Heating. Chem Eng Technol 41:116-123. Kuester EF, Holloway CL. 1994. A low-frequency model for wedge or pyramid absorber arrays-I: theory. IEEE Trans Electromagn Compat 36:300-306. Lagunas-Solar MC, Pan Z, X. Zeng N, D. Truong T, Khir R, S. P. Amaratunga K. 2007. Application of Radiofrequency Power for Non-Chemical Disinfestation of Rough Rice with Full Retention of Quality Attributes. Appl Eng Agri 23:647-654. Lin MS, Lin SM, Chiang WY, Barnett LR, Chu KR. 2015. Effects of polarization-charge shielding in microwave heating. Phys Plasmas 22:083302. Ling B, Tiwari G, Wang S. 2015. Pest control by microwave and radio frequency energy: dielectric properties of stone fruit. Agron. Sustain. Dev. 35:233–240. Locatelli DP, Traversa S. 1989. Microwaves in the control of rice infestants. Ital J Food Sci 1:53-62. Macana RJ, Baik OD. 2018. Disinfestation of insect pests in stored agricultural materials using microwave and radio frequency heating: A review. Food Rev Intl 34:483-510. Manickavasagan A, Alahakoon PMK, Al-Busaidi TK, Al-Adawi S, Al-Wahaibi AK, Al-Raeesi AA, Al-Yahyai R, Jayas DS. 2013. Disinfestation of stored dates using microwave energy. J Stored Prod Res 55:1-5. Manickavasagan A, Jayas DS, White NDG. 2006. Non-Uniformity of Surface Temperatures of Grain after Microwave Treatment in an Industrial Microwave Dryer. Drying Technol 24:1559-1567. Nelson SO. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans ASAE 39:1475-1484. Nelson SO. 2015. Dielectric Properties Data. Dielectric Properties of Agricultural Materials and Their Applications Academic Press, Cambridge, MA. pp 211-246. Nelson SO, Bartley PGJ, Lawrence KC. 1998. RF and microwave dielectric properties of store-grain insects and their implications for potential insect control. Trans ASAE 41:685-692. Nelson SO, Charity LF. 1972. Frequency dependence of energy absorption by insects and grain in electric fields,. Trans ASAE 15:1099-1102. Nelson SO, Stetson LE. 1974. Comparative effectiveness of 39- and 2450-MHz electric fields for control of rice weevils in wheat. J Econ Entomol 67:592-595. Noh SH, Nelson SO. 1989. Dielectric properties of rice at frequencies from 50 Hz to 12 GHz. Trans ASAE 32:991-998. Nornikman H, Soh P, Azremi A. 2009. Performance of different polygonal microwave absorber designs using novel material. 2009 International Symposium on Antennas and Propagation (ISAP 09) Bangkok, Thailand, pg. pp 1151-1154. Oghbaei M, Mirzaee O. 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloy Compd 494:175-189. Phillips TW, Throne JE. 2010. Biorational approaches to managing stored-product insects. Annu Rev Entomol 55:375-397. Piyasena P, Dussault C, Koutchma T, Ramaswamy HS, Awuah GB. 2003. Radio frequency heating of foods: principles, applications and related properties—a review. Crit Rev Food Sci 43:587-606. Plarre R, Halverson SL, Burkholder WE, Bigelow TS, Misenheimer ME. 1998. Microwaves at higher frequencies, can they be used for stored product pest control. Proc. 7th International Working Conference on Stored-Product Protection. pp 1152-1157. Prasad A, Singh PN. 2007. A new approach to predicting the complex permittivity of rice. Trans ASABE 50:573-582. Purohit P, Jayas DS, Yadav BK, Chelladurai V, Fields PG, White NDG. 2013. Microwaves to control Callosobruchus maculatus in stored mung bean (Vigna radiata). J Stored Prod Res 53:19-22. Qin F, Brosseau C. 2012. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301. Resch H. 2006. High-frequency electric current for drying of wood - Historical perspectives. Maderas. Ciencia y tecnología 8:67-82. Rosen A, Stuchly MA, Vorst AV. 2002. Applications of RF/microwaves in medicine. IEEE Trans Microw Theory Technol 50:963-974. Rybakov KI, Olevsky EA, Krikun EV, Green DJ. 2013. Microwave Sintering: Fundamentals and Modeling. J Amer Ceram Soc 96:1003-1020. Shayesteh N, Barthakur NN. 1996. Mortality and behaviour of two stored-product insect species during microwave irradiation. J Stored Prod Res 32:239-246. Shen MK, Chiang WY, Wu KL, Chu KR. 2013. Millimeter and terahertz wave absorption in a lossy conducting layer. Phys Plasmas 20:103301. Shrestha B, Baik O-D. 2013. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study. Biosystems Eng 114:195-204. Tsai YF, Barnett LR, Teng HH, Ko CC, Chu KR. 2017. A study of some inherent causes for non-uniform microwave heating. Phys Plasmas 24:103301. Uyar R, Erdogdu F, Sarghini F, Marra F. 2016. Computer simulation of radio-frequency heating applied to block-shaped foods: Analysis on the role of geometrical parameters. Food Bioprod Process 98:310-319. Van Bladel J. 1985. Field singularities at the tip of a dielectric cone. IEEE Trans Antennas Propag 33:893-895. Wang S, Luechapattanaporn K, Tang J. 2008. Experimental methods for evaluating heating uniformity in radio frequency systems. Biosystems Eng 100:58-65. Wang S, Tang J. 2001. Radio frequency and microwave alternative treatments for insect control in nuts - A review. Agri Eng J 10:105-120. Wang S, Tang J, Cavalieri RP, Davis DC. 2003. Differential Heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Trans ASAE 46:1175-1182. Wang S, Tang J, Johnson JA, Cavalieri RP. 2013. Heating uniformity and differential heating of insects in almonds associated with radio frequency energy. J Stored Prod Res 55:15-20. Wang Y, Zhang L, Johnson J, Gao M, Tang J, Powers JR, Wang S. 2014. Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food Bioprocess Technol 7:278-288. Watters FL. 1976. Microwave radiation for control of Tribolium confusum in wheat. J Stored Prod Res 12:19-25. Zhou L, Ling B, Zheng A, Zhang B, Wang S. 2015. Developing radio frequency technology for postharvest insect control in milled rice. J Stored Prod Res 62:22-31. Zhou L, Wang S. 2016. Verification of radio frequency heating uniformity and Sitophilus oryzae control in rough, brown, and milled rice. J Stored Prod Res 65:40-47. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/624 | - |
| dc.description.abstract | 昆蟲危害會對儲物的品質和數量造成很嚴重的影響。利用極端的溫度殺死害蟲是最常見的物理防治法,而介電加熱到昆蟲的致死溫度是其中最快速的方式。雖經過往昔數十年研究,目前的技術仍亟待改進,我們乃對此議題進行更深入的物理通則探討,並提出一創新途徑。我們建立一套24 GHz加熱系統,此頻率遠高於往昔研究所使用之頻率,但仍屬科學、工業及醫療之使用頻段。微波源為千瓦級連續波分布作用震盪器,可穩定輸出可調整的微波。我們建立的微波暗室加熱系統也能應用於其他需要均勻加熱、可控制且能解析的微波研究。我們比較27 MHz、2.45 GHz、24 GHz發現,數據的準確度與電場均勻度呈正相關,與加熱時間呈負相關,顯示使用24 GHz高頻微波加熱並將樣本置於微波暗室內最能夠均勻且快速加熱。我們也研究在均勻電場下,微波加熱時產生不同溫度分布的內在成因。在均勻電場下,加熱的物體溫度具有25.2% 的差異,其最主要原因為極化電荷的屏蔽效應造成,單此效應即佔前述25.2% 中的18.2%。我們發現另加熱物體的形狀和介電損耗分別對不均勻溫度具有3.4% 和3.6%的加成。我們也以24 GHz達成差溫加熱,並研究害蟲與寄主差溫加熱效應中的科學議題。我們認為24 GHz高頻微波,以圓極化波加熱均勻且快速,具有極高的應用潛力。 | zh_TW |
| dc.description.abstract | Insect pest infestation can cause severe quantity and quality losses to stored-agricultural products. Control insect pests with extreme temperatures are the mainstream physical treatments, dielectric heating insect to the lethal temperature is the fastest approach amongst all. For more demanding applications, current techniques need to be refined, which in turn requires a deeper understanding of the scientific issues involved, and a novel, fundamentally different approach. We built a microwave applicator for uniform irradiation of small samples at the relatively high, and rarely exploited, ISM frequency of 24 GHz. The radiation source is a 1 kW CW EIO with stable and variable output power. This type of applicator may also be a suitable tool for microwave-assisted research for which irradiation uniformity, controllability, and in situ diagnostics are desired. Among the comparison with 27 MHz, 2.45 GHz, and 24 GHz, the accuracy of data increases with more uniform field distribution and shorter heating time. suggests an anechoic chamber and circularly-polarized, 24-GHz microwave heats most fast and uniform. We also studied the inherent causes of percentage temperature spread in microwave heating. The percentage temperature spread due to all causes is measured to be at a high value of 25.2%, the dominant contribution is identified to be the polarization-charge shielding, which accounts for a percentage spread of ~18.2% relative to the overall value of 25.2%. Two other causes, sample shape and dielectric loss variations, each contribute to a percentage spread of ~3.4% and ~3.6%. We also demonstrate and study the scientific issues in differential heating. We suggest that high frequency such as 24-GHz heating with circularly-polarized wave shows great promising. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T04:45:01Z (GMT). No. of bitstreams: 1 ntu-108-D05632008-1.pdf: 3925423 bytes, checksum: 0bccddacea8ba46ee8015418bb7d126b (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Dielectric heating applicators for uniform irradiation 6 2.1 A 24-GHz Microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber 6 2.1.1 Introduction 6 2.1.1.1. Anechoic chamber 6 2.1.1.2. Factors affecting radiation uniformity and possible remedies 7 2.1.1.3. A brief description of the current scheme 8 2.1.2 Anechoic chamber, radiation source, and diagnostic tools 9 2.1.3 Calculated radiation pattern and intensity 12 2.1.3.1. Radiation pattern 12 2.1.3.2. Radiation Intensity 14 2.1.4 Polarization measurement 17 2.1.5 Microwave heating test 18 2.1.6 Summary 19 2.2 3 kW, 2.45-GHz applicator for comparison 20 2.3 A 27-MHz RF applicator allows uniform heating under extremely high electric field 21 Chapter 3 A comparative study of insect heating by microwave irradiation at different frequencies 24 3.1 Introduction 24 3.1.1 Historical background 24 3.1.2 The frequency choice 25 3.1.3 RF and low-frequency microwave treatments 25 3.1.4 High-frequency microwave treatments 26 3.1.5 Motivation and objectives of the current study 28 3.2 Materials and methods 29 3.2.1 Microwave system 29 3.2.2 Insect 30 3.2.3 Heating process 30 3.3 Experimental results 31 3.4 Summary and discussion 33 Chapter 4 A study of some inherent causes for non-uniform microwave heating 36 4.1 Introduction 36 4.2 Theoretical considerations 38 4.3 Experimental setup 40 4.3.1 Applicator 40 4.3.2 Calibration of radiation uniformity 41 4.3.3 Sample preparation and experimental procedure 42 4.4 Experimental results 44 4.4.1 Polarization-charge shielding in thermal images and its significance 44 4.4.2 Quantification of the heating non-uniformity 46 4.4.3 Temperature spread of rice grains heated in isolation by linearly-polarized waves 47 4.4.4 Contribution to heating non-uniformity by the polarization-charge shielding effect 48 4.4.5 Contributions to heating non-uniformity by sample variations in shape and dielectric loss 50 4.5 Summary and discussion 51 Chapter 5 A physical study of microwave disinfestation by selective heating of insects embedded in rice grains 54 5.1 Introduction 54 5.2 Experimental setup, sample, and procedures 56 5.3 Experimental results and analyses 58 5.4 Summary and discussion 61 Chapter 6 Conclusion 63 Reference 65 Appendix 73 | |
| dc.language.iso | en | |
| dc.subject | 差溫加熱 | zh_TW |
| dc.subject | 24 GHz | zh_TW |
| dc.subject | 圓極化波 | zh_TW |
| dc.subject | 微波加熱 | zh_TW |
| dc.subject | 害蟲防治 | zh_TW |
| dc.subject | insect control | en |
| dc.subject | microwave heating | en |
| dc.subject | 24 GHz | en |
| dc.subject | circular polarized wave | en |
| dc.subject | differential heating | en |
| dc.title | 微波防治蟲害之新穎途徑與物理通則探討 | zh_TW |
| dc.title | Studies on a novel approach and physics of microwave insect pest control | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭復興(Fu-Hsing Cheng),彭武康(Wu-Kang Peng),姚美吉(Me-Chi Yao),陳漢穎(Han-Ying Chen) | |
| dc.subject.keyword | 微波加熱,害蟲防治,24 GHz,圓極化波,差溫加熱, | zh_TW |
| dc.subject.keyword | microwave heating,insect control,24 GHz,circular polarized wave,differential heating, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201903712 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 3.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
