請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬(Kung-Bin Sung) | |
| dc.contributor.author | Hsi-Hsun Chen | en |
| dc.contributor.author | 陳錫勳 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:03:13Z | - |
| dc.date.available | 2013-07-08 | |
| dc.date.copyright | 2013-07-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-02 | |
| dc.identifier.citation | 1.Utzinger U & Richards-Kortum RR (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 8(1):121-147.
2.張鎮西 (2008) 生物醫學光子學新技術及應用. 科學出版社. 3.Brown JQ, Vishwanath K, Palmer GM, & Ramanujam N (2009) Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer. Curr Opin Biotechnol 20(1):119-131. 4.Arifler D, MacAulay C, Follen M, & Richards-Kortum R (2006) Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements. J Biomed Opt 11(6):064027-064016. 5.Kienle A, et al. (1996) Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt. 35(13):2304-2314. 6.行政院衛生署 (100) 99年死因統計結果分析. 7.De Veld DCG, Witjes MJH, Sterenborg HJCM, & Roodenburg JLN (2005) The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncology 41(2):117-131. 8.Subhash N, et al. (2006) Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J Biomed Opt 11(1):014018. 9.Robbins SL (2002) Pocket companion to Robbins pathologic basis of disease (合记图书出版社). 10.Arifler D, Schwarz RA, Chang SK, & Richards-Kortum R (2005) Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. Appl. Opt. 44(20):4291-4305. 11.Skala MC, et al. (2004) Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers. Lasers Surg Med 34(1):25-38. 12.Nieman L, Myakov A, Aaron J, & Sokolov K (2004) Optical Sectioning Using a Fiber Probe with an Angled Illumination-Collection Geometry: Evaluation in Engineered Tissue Phantoms. Appl. Opt. 43(6):1308-1319. 13.Garcia-Uribe A, Balareddy KC, Zou J, & Wang LV (2008) Micromachined Fiber Optical Sensor for <emphasis emphasistype='italic'>In Vivo</emphasis> Measurement of Optical Properties of Human Skin. Sensors Journal, IEEE 8(10):1698-1703. 14.Schwarz RA, et al. (2005) Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue. Opt. Lett. 30(10):1159-1161. 15.Choi HY, et al. (2011) Microlensed dual-fiber probe for depth-resolved fluorescence measurements. Opt. Express 19(15):14172-14181. 16.Nieman LT, Jakovljevic M, & Sokolov K (2009) Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues. Opt. Express 17(4):2780-2796. 17.Reif R, A'Amar O, & Bigio IJ (2007) Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media. Appl. Opt. 46(29):7317-7328. 18.Jaillon F, Zheng W, & Huang Z (2008) Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations. Phys Med Biol 53(4):937-951. 19.Wang Q, Shastri K, & Pfefer TJ (2010) Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue. Appl. Opt. 49(28):5309-5320. 20.Liu Q & Ramanujam N (2006) Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Appl. Opt. 45(19):4776-4790. 21.Chang SK, Marin N, Follen M, & Richards-Kortum R (2006) Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia. J Biomed Opt 11(2):024008. 22.Yudovsky D & Durkin AJ (2011) Spatial frequency domain spectroscopy of two layer media. J Biomed Opt 16(10):107005. 23.Wang Q, Le D, Ramella-Roman J, & Pfefer J (2012) Broadband ultraviolet-visible optical property measurement in layered turbid media. Biomed. Opt. Express 3(6):1226-1240. 24.Tseng T-Y, Chen C-Y, Li Y-S, & Sung K-B (2011) Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy. Biomed. Opt. Express 2(4):901-914. 25.Wang AMJ, Bender JE, Pfefer J, Utzinger U, & Drezek RA (2005) Depth-sensitive reflectance measurements using obliquely oriented fiber probes. J Biomed Opt 10(4):044017-044017. 26.Wang LV, et al. (1995) Oblique-incidence reflectometry: one relative profile measurement of diffuse reflectance yields two optical parameters.165-175. 27.Welch AJ & Van Gemert MJC (2011) Optical-Thermal Response of Laser-Irradiated Tissue (Springer). 28.Farrell TJ, Patterson MS, & Wilson B (1992) A DIFFUSION-THEORY MODEL OF SPATIALLY RESOLVED, STEADY-STATE DIFFUSE REFLECTANCE FOR THE NONINVASIVE DETERMINATION OF TISSUE OPTICAL-PROPERTIES INVIVO. Medical Physics 19(4):879-888. 29.Lue N, et al. (2012) Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment. PLoS ONE 7(1):e30887. 30.Sun J, et al. (2006) Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements. Appl. Opt. 45(31):8152-8162. 31.Wang L, Jacques SL, & Zheng L (1995) MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine 47(2):131-146. 32.Liu Q & Ramanujam N (2007) Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. J. Opt. Soc. Am. A 24(4):1011-1025. 33.Ren N, et al. (2010) GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt. Express 18(7):6811-6823. 34.Fang Q & Boas DA (2009) Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17(22):20178-20190. 35.Graaff R, et al. (1993) Condensed Monte Carlo simulations for the description of light transport. Appl. Opt. 32(4):426-434. 36.Smith WJ (1966) Modern optical engineering; the design of optical systems [by] Warren J. Smith (McGraw-Hill, New York). 37.Palmer GM & Ramanujam N (2006) Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl. Opt. 45(5):1062-1071. 38.Bargo PR, et al. (2005) In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy. J Biomed Opt 10(3):034018. 39.Li Y-S (2011) Using a Fourier Hyperspectral microscopy image-based system to quantifying the optical parameters of oral mucosa. Master (National Taiwan University). 40.Kim A, Roy M, Dadani F, & Wilson BC (2010) A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Opt. Express 18(6):5580-5594. 41.Wang Q, Yang H, Agrawal A, Wang NS, & Pfefer TJ (2008) Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system. Opt. Express 16(12):8685-8703. 42.Pavlova I, et al. (2008) Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer. J Biomed Opt 13(6):064012. 43.Sung K-B & Chen H-H (2012) Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study. Journal of Biomedical Optics 17(10):107003-107003. 44.Walker DC, Brown BH, Blackett AD, Tidy J, & Smallwood RH (2003) A study of the morphological parameters of cervical squamous epithelium. Physiol Meas 24(1):121-135. 45.McGee S, et al. (2008) Model-based spectroscopic analysis of the oral cavity: impact of anatomy. Journal of Biomedical Optics 13(6):064034-064034. 46.Vivide Tuan-Chyan Chang PSC, Sarah M. Bean, Greg M. Palmer, Rex C. Bentley and Nirmala Ramanujam ( April 2009 ) Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy. Neoplasia Volume 11 pp. 325–332. 47.Rajaram N, Nguyen TH, & Tunnell JW (2008) Lookup table--based inverse model for determining optical properties of turbid media. J Biomed Opt 13(5):050501-050503. 48.Erickson TA, Mazhar A, Cuccia D, Durkin AJ, & Tunnell JW (2010) Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime. J Biomed Opt 15(3):036013. 49.Palmer GM & Ramanujam N (2008) Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media. Journal of Biomedical Optics 13(2):024017-024017. 50.Chang SK, Arifler D, Drezek R, Follen M, & Richards-Kortum R (2004) Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements. Journal of Biomedical Optics 9(3):511-522. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62488 | - |
| dc.description.abstract | 在如口腔組織的鱗狀細胞瘤癌變的過程中,主要是從上皮結構開始產生退行性發育,因此在用於早期癌症診斷的光纖式漫反射光譜的研究中,準確的定量跟上皮層組織相關的光學參數是非常重要的,尤其是跟上皮細胞結構相關的散射係數。然而在雙層組織中,由於上皮層比起下層組織(基質)而言非常的薄,漫反射光譜大部分容易受到下層的影響,使得上皮層的光學參數相當難以準確地定量;而在前人提出的不同光纖設計的研究中,以模擬而言,對於上皮層散射係數,定量的誤差範圍約在4~42%,上下層多個光學參數的整體誤差約為1~49%。為了改善傳統光纖設計對上皮層光學參數不靈敏的缺點,我們利用沿著組織表面傾斜且平行排列的斜角光纖,及自行開發的光譜擬合工具來達到準確定量上皮層光學參數的目的。
本論文主要為數值模擬的研究,首先利用雙層縮放(scaling)蒙地卡羅(Monte Carlo)演算法來加速傳統蒙地卡羅演算法計算時間較長的缺點,此光譜模擬工具由C++所編寫,其計算時間顯著降低,且與傳統蒙地卡羅演算法相比,誤差小於1%。本研究利用此程式模擬調整上下層光學參數後,觀察空間解析光譜的靈敏度變化趨勢,由模擬結果可看出斜角光纖確實對上皮層光學參數的變化有較高的靈敏度,但對下層的血紅素吸收較不靈敏,此缺點可由圈選適當的光纖收光區域來改善。 接下來,本研究利用MATLAB編寫反向擬合工具來模擬定量雙層組織中的多個光學參數之準確度,利用最佳化的斜角光纖設計,分別擬合調整血紅素濃度或上皮層厚度的光譜,其定量上層散射係數的平均誤差約為1.5%,且上下層光學參數的整體誤差皆小於7%。因此本研究所提出的光纖設計及擬合方法不僅改善了定量上皮層散射係數的準確度,同時也準確地定量雙層組織中的多個光學參數,有利於光纖式漫反射光譜對於早期癌症的診斷。 | zh_TW |
| dc.description.abstract | Fiber-based diffuse reflectance spectroscopy has been applied to detect absorption and scattering properties associated with dysplasia in the tissue, which is a potential precursor of epithelial cancers. The more accurate measurement and quantification of optical properties in the thin epithelial layer is important to early dysplasia detection. The aim of this simulation study is to improve the accuracy of quantifying the scattering coefficients of the thin epithelial layer in a two-layered mucosal tissue model. The proposed method is to use obliquely oriented fibers which consist of a source fiber and multiple detection fibers parallel to each other and oriented obliquely to the tissue surface, instead of perpendicular fibers which have the drawback of weak performance of quantifying the optical properties of the thin epithelium.
The major algorithm was Monte Carlo method. Since the conventional Monte Carlo simulation has high time complexity, a novel scaling method was used to speed up a forward model for simulating the spatially-resolved reflectance spectra. We implemented this simulation tool by C++. There was a significant improvement of time consumption, and the average deviation in the reflectance between our tool and the MCML open source code was 0.60±0.44%. We utilized our code to investigate the sensitivity of spatially-resolved spectra to the optical coefficients of the two layers. The results show that the oblique fibers had much higher sensitivity than perpendicular fibers to changes of the optical coefficients of the thin epithelial layer but lower sensitivity to stromal absorption and scattering coefficients. An inverse model was implemented with MATLAB to fit simulated spectra in order to quantify the unknown optical properties of the two-layered model. The fitting results show that the oblique fibers significantly reduced the root mean square percentage error of extracted epithelial scattering coefficient in comparison to the perpendicular fibers (from 32% to 1.5%). The average error in other optical properties was below 7% using the oblique fibers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:03:13Z (GMT). No. of bitstreams: 1 ntu-102-R99945022-1.pdf: 2802646 bytes, checksum: 93638a2822b88944e74a5e68cfbbd4ca (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 II
中文摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1-1前言 1 1-2研究動機 2 1-3論文架構 4 第二章 理論基礎 5 2-1 漫反射理論 5 2-2 蒙地卡羅演算法 9 2-3 Scaling蒙地卡羅演算法 12 2-4光纖傳播原理 14 2-5 順向模型與反向模型 15 第三章 研究方法 19 3.1實驗設計 19 3.2光纖架構設計 20 3.3 資料分析 21 3.3-1 靈敏度分析 21 3.3-2平均路徑長分析 21 3.3-3 光通量分佈計算 22 3.3-4上層碰撞次數比分析 22 3.4光譜擬合工具 23 3.5模擬參數設定 25 第四章 實驗結果 27 4.1 程式驗證 27 4.2靈敏度 28 4.3上層散射係數與下層吸收係數的複合式影響 33 4.4平均路徑長分析 35 4.5 光通量分佈與光纖探測深度 36 4.6上層碰撞次數比(ENCF) 38 4.7擬合結果 40 第五章 討論與結論 46 5.1結論 46 5.2未來展望 48 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蒙地卡羅演算法 | zh_TW |
| dc.subject | 口腔黏膜組織 | zh_TW |
| dc.subject | 光學組織參數 | zh_TW |
| dc.subject | 空間漫反射光譜 | zh_TW |
| dc.subject | Monte Carlo algorithm | en |
| dc.subject | Oral mucosa | en |
| dc.subject | optical properties | en |
| dc.subject | spatially-resolved diffuse reflectance spectrum | en |
| dc.title | 利用斜角光纖定量雙層組織的光學參數 | zh_TW |
| dc.title | Quantifying the optical properties of tissue using Oblique fiber geometry in a two-layered tissue | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉(Chia-Wei Sun),曾盛豪(Sheng-Hao Tseng) | |
| dc.subject.keyword | 口腔黏膜組織,空間漫反射光譜,光學組織參數,蒙地卡羅演算法, | zh_TW |
| dc.subject.keyword | Oral mucosa,spatially-resolved diffuse reflectance spectrum,optical properties,Monte Carlo algorithm, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
