請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6246完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁宗蘇(Tzung-Su Ding) | |
| dc.contributor.author | Po-Ju Ke | en |
| dc.contributor.author | 柯柏如 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:24:03Z | - |
| dc.date.available | 2013-07-19 | |
| dc.date.available | 2021-05-16T16:24:03Z | - |
| dc.date.copyright | 2013-07-19 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-03 | |
| dc.identifier.citation | Alvarez-Loayza P, Terborgh J. 2011. Fates of seedling carpets in an Amazonian floodplain forest: intra-cohort competition or attack by enemies? Journal of Ecology 99: 1045-1054.
Allison SD, Vitousek PM. 2004. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141: 612-619. Augspurger CK. 1983. Seed Dispersal of the Tropical Tree, Platypodium Elegans, and the Escape of its Seedlings from Fungal Pathogens. The Journal of Ecology 71: 759-771. Augspurger CK, Kelly CK. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211-217. Augspurger CK. 1990. Spatial patterns of dampinf-off disease during seedling recruitment in tropical forests. In: Burdon JJ, Leather SR, eds. Pests, Pathogens and Plant Communities. Oxford, UK: Blackwell Scientific Publications, 131-144. Bagchi R, Swinfield T, Gallery RE, Lewis OT, Gripenberg S, Narayan L, Freckleton RP. 2010. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters 13: 1262-1269. Bell T, Freckleton RP, Lewis OT. 2006. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters 9: 569-574. de Bello F, Lavorel S, Diaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, et al. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation 19: 2873-2893. Berendse F.1994. Litter decomposability - a neglected component of plant fitness. Journal of Ecology 82: 187-190. Bever JD, Westover KM, Antonovics J. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology 85: 561-573. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends in ecology & evolution 25: 468-478. Binley D, Giardina C. 1998. Why do tree species affect soil? The warp and woof of tree-soil interaction. Biogeochemistry 42: 89-106. Brinkman EP, van der Putten WH, Bakker EJ, Verhoeven KJF. 2010. Plant-soil feedback: experiment approaches, statistical analysis and ecological interpretations. Journal of Ecology 98: 1063-1073. Callaway RM, Thelen GC, Rodriguez A, Holben WE. 2004. Soil biota and exotic plant invasion. Nature 427: 731-733. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA. 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11: 371-384. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366. Cowden CC, Peterson CJ. 2009. A multi-mutualist simulation: applying biological market models to diverse mycorrhizal communities. Ecological Modelling 220: 1522-1533. van Dam NM. 2009. Belowground Herbivory and Plant Defenses. Annual Review of Ecology, Evolution, and Systematics 40: 373-391. De Deyn GB, Raaijmakers CE, van der Putten WH. 2004. Plant community development is affected by nutrients and soil biota. Journal of Ecology 92: 824-834. De Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison K a, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, et al. 2012. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters 15: 1230-1239. Dickie IA, Schnitzer SA, Reich PB, Hobbie SE. 2005. Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters 8: 1191-200. Drenovsky RE, Batten KM. 2007. Invasion by Aegilops triuncialis ( barb goatgrass ) slows carbon and nutrient cycling in a serpentine grassland. Biological Invasion 9: 107–116. Ehrenfeld JG, Ravit B, Elgersma K. 2005. Feedback in the plant-soil system. Annual Review of Environment and Resources 30: 75-115. Eppinga MB, Rietkerk M, Dekker SC, De Ruiter PC. 2006. accumulation of pathogens: a new hypothesis to explain exotic plant invasion. Oikos 114: 168-176. Eppinga MB, Kaproth MA, Collins AR, Molofsky J. 2011. Litter feedback, evolutionary change and exotic plant invasion. Journal of Ecology 99: 503-514. van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310. Johnson NC. 2009. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185: 631-647. Kardol P, Bezemer TM, van der Putten WH. 2006. Temporal variation in plant-soil feedback controls succession. Ecology Letters 9: 1080-1088. Kardol P, Corpins NJ, van Kempen MML, Bakx-Schotman JMT, van der Putten WH. 2007. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs 72: 147-162. Klironomos JN. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 67–70. Kulmatiski A, Heavilin J, Beard KH. 2011. Testing predictions of a three-species plant-soil feedback model. Journal of Ecology 99: 542-550. Kulmatiski A, Beard KH. 2011. Long-tern plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biology & Biochemistry 43: 823-830. Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes D a. 2012. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters 15: 831-840. Kurokawa H, Nakashizuka T. 2008. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89: 2645-2656. Kurokawa H, Peltzer DA, Wardle DA. 2010. Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Functional Ecology 24: 513-523. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion : a meta-analysis. New Phytologist 177: 706-714. Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD. 2010. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466: 752-755. Mangla S, Inderjit, Callaway RM. 2008. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. Journal of Ecology 96: 58-67. Manning P, Morrison SA, Bonkowski M, Bardgett RD. 2008. Nitrogen enrichment modifies plant community structure via changes to plant-soil feedback. Oecologia 157: 661-673. Mazzoleni S, Bonanomi G, Giannino F, Rietkerk M, Dekker SC, Zucconi F. 2007. Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity. Community Ecology 8: 103–109. McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends in ecology & evolution 21: 178-185. Menge DNL, Pacala SW, Hedin LO. 2009. Emergence and maintenance of nitrogen limitation over multiple timescales in terrestrial ecosystems. The American Naturalist 173: 164-175. Miki T, Kondoh M. 2002. Feedbacks between nutrient cycling and vegetation predict plant species coexistence and invasion. Ecology Letters 5: 624-633. Miki T, Ushio M, Fukui S, Kondoh M. 2010. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proceedings of the National Academy of Sciences, USA 107: 14251-14256. Mitchell CE, Power AG. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421: 625-627. Packer A, Clay K. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278-281. Petermann JS, Fergus AJF, Turnbull LA, Schmid B. 2008. Janzen-Connell effects are widespread and strong enough to maintain diversity in grassland. Ecology 89: 2399-2406. van der Putten WH, Peters BAM. 1997. How soil-borne pathogens may affect plant competition. Ecology 78: 1785-1795. van der Putten WH, Bardgett RD, De Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford MA, Christensen S, Eppinga MB, Fukami T, et al. 2009. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161: 1-14. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, et al. 2013. Plant-soil feedbacks : the past, the present and future challenges. Journal of Ecology 101: 265-276. Raaijmakers JM, Paylitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y. 2008. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil 321: 341-361. Rasmann S, Bauerle TL, Poveda K, Vannette R. 2011. Predicting root defence against herbivores during succession. Functional Ecology 25: 368-379. Read DJ, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems - a journey towards. New Phytologist 157: 475-492. Reinhart KO, Callaway RM. 2006. Soil biota and invasive plants. New Phytologist 170: 445-457. Reinhart KO, Royo AA, Kageyama SA, Clay K. 2010. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species. Acta Oecologica 36: 530-536. Šmilauerova M, Lokvencova M, Šmilauer P. 2011. Fertilization and forb: graminoid ratio affect arbuscular mycorrhiza in seedlings but not adult plants of Plantago lanceolata. Plant and Soil 351: 309-324. Treseder K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347-355. Veresoglou SD, Chen B, Rillig MC. 2012. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry 46: 53-62. Wallander H. 1995. A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant and Soil 168-169: 243-248. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629-33. Wardle DA. 2006. The influence of biotic interactions on soil biodiversity. Ecology Letter 9: 870-886. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-bares J, Chapin T, Cornelissen JHC, Diemer M, et al. 2004. The worldwide leaf economics spectrum. Nature 12: 821-827. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6246 | - |
| dc.description.abstract | 植物與土壤間交互作用所產生的回饋現象(植物土壤回饋)會改變植群發展。因此,了解植物功能性狀如何調控植物土壤回饋強度之種間變異為植群研究的重要議題。過去研究只探討枯落物養分循環或土壤微生物之單一因子所造成之回饋現象。然而這兩項因子並非獨立,分開討論會忽略枯落物與微生物間的間接交互作用。此外,過去研究忽略了不同的微生物會透過不同的機制影響枯落物動態。本研究建立一個生態模式,同時納入枯落物循環與土壤微生物對植物土壤回饋的影響,以了解植物功能性狀如何調控植物土壤回饋強度,並探討土壤微生物群聚組成如何影響不同功能性狀的相對重要性。結果顯示當把土壤微生物的影響納入枯落物回饋的模式時,影響力較強的功能性狀差異相當大。此外,土壤微生物群聚組成會影響功能性狀的相對重要性,其中枯落物分解速率的重要性會隨著菌根菌的豐度增加而顯著上升。此模式預測在沒有土媒病害的土壤中,易分解及會與菌根菌形成高效益互利共生的植物佔有生長優勢;而當土媒病害豐度高時,具有較佳防禦策略的植物會佔優勢。本研究結果可應用於了解功能性狀如何在不同土壤環境中影響外來種的入侵。 | zh_TW |
| dc.description.abstract | Interaction of plants with the nearby soil environment, a process termed plant-soil feedback (PSF), is a structuring force for vegetation development. Understanding how plant functional traits control PSF strength variation among species is thus critical for plant community ecology. Studies have highlighted either nutrient cycling (litter-mediated PSF) or soil biota (microbial-mediated PSF) separately as two main drivers of PSF and thus focus on different sets of plant traits. However, the two PSF drivers are not independent and their way of interaction depends on the functional type of microbes (i.e. pathogens and mycorrhizas). An ecosystem model coupling indirect interaction between litter and microbial feedback is presented to identify which traits have strongest effect on PSF strength and, its dependence on soil microbial community composition. This model shows that the identity of the most influential plant functional traits alters when microbial-mediated PSF is considered along with litter-mediated PSF. The relative importance of traits depends on microbial composition. In particular, the importance of litter decomposability increases with the relative abundance of mycorrhizas due to its indirect positive effects on litter production. Plants with more easily-decomposable litter and with more beneficial plant-mycorrhiza associations are more advantageous than other plants species in pathogen-free soils. On the other hand, plants with better defense traits are expected to be dominant in pathogen-rich soils. The results can provide useful insights into understanding the key determinants of successful plant invasion in different soil environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:24:03Z (GMT). No. of bitstreams: 1 ntu-102-R00625009-1.pdf: 2728165 bytes, checksum: a855a291f5d9511e5479b14e97586c05 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Acknowledgement…………………………………………………………………………………….i
English Abstract……………………………………………………………....………………..........iii Chinese Abstract………………………………………………………………………………….…..v Introduction………….………………………………………………………...…………………......1 Method……………………………………………………………………………….…………….10 Model Description……………………………………..…………………………………….10 Seedling and adult demographic dynamics……………...…………………………...…10 Mycorrhiza and mycorrhizal-enhancement of plant growth……………………………..11 Pathogens………………………………………………………………............................14 Litter……………………………………………………………………………………...15 Soil nitrogen………………………………………………………………………….......16 Model Analysis and Simulation Experiments……………………………………………........17 Results………………………………………………………………………................................... 21 Litter-mediated PSF only without any direct-interacting microbes………………………..….21 Litter-mediated PSF and pathogens………………………………………………………..…..21 Litter-mediated PSF and mycorrhizas……………………………………………………..…..22 Litter-mediated PSF and both pathogens and mycorrhizas…………………………………....24 Discussion…………………………………………………………………………………………...26 Effects of microbial community composition on relative importance of traits…………..……26 Effects of microbial composition on the relative importance of litter-mediated PSF…...…….29 Effects of stage structure on PSF strength and relative importance of traits…….….…….…...30 Insights for exotic plant invasion success………………………………………………….….31 Future work and Conclusion……………………………….………………………………….34 References…………………………………………………………………..………………..…..…37 Figures………………….………………..……………………..………….……………….……….44 Tables…………………………………..……………………………………………………….......53 Appendix S1: PSF strength using trait values with larger deviation from the reference plant ….....61 Appendix S2: Robustness of results based on randomly assembled target plants…………….……67 Appendix S3: Positivity of the microbe-free equilibrium and invasibility analysis for microbes….73 Appendix S4: Sources of parameter values used for the reference plant……………………...……76 Appendix S5: Processes of numerical simulation…………………………………………………..83 | |
| dc.language.iso | en | |
| dc.title | 以生態模式探討植物性狀與土壤微生物組成對
植物土壤回饋之種間差異的影響 | zh_TW |
| dc.title | Plant Trait and Microbial Composition Interactively Determine Species Variation in Plant Soil Feedback
—a Modeling Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 三木健(Takeshi Miki) | |
| dc.contributor.oralexamcommittee | 謝志豪,林雨德,林宜靜 | |
| dc.subject.keyword | 功能性狀生態學,枯落物分解,菌根菌,土媒病害,間接交互作用,族群層級結構,外來植物入侵, | zh_TW |
| dc.subject.keyword | functional trait-based ecology,litter decomposition,mycorrhiza,soil pathogen,indirect interaction,population stage structure,exotic plant invasion, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-07-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 2.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
