Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62437
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于靖(Jing-Yu)
dc.contributor.authorYean-Nee Tanen
dc.contributor.author陳彥霓zh_TW
dc.date.accessioned2021-06-16T16:02:31Z-
dc.date.available2013-07-11
dc.date.copyright2013-07-11
dc.date.issued2013
dc.date.submitted2013-07-05
dc.identifier.citation[1] C. Carvalho and F. Torres, 'On Goppa codes and Weierstrass gaps at several points,' Designs Codes and Cryptography, vol. 35, pp. 211-225, May 2005.
[2] C. P. Xing, 'Algebraic-geometry codes with asymptotic parameters better than the Gilbert-Varshamov and the Tsfasman-Vladut-Zink bounds,' IEEE Transactions on Information Theory, vol. 47, pp. 347-352, Jan 2001.
[3] C. P. Xing and H. Chen, 'Improvements on parameters of one-point AG codes from Hermitian curves,' IEEE Transactions on Information Theory, vol. 48, pp. 535-537, Feb 2002.
[4] G. L. Matthews, 'Weierstrass pairs and minimum distance of Goppa codes,' Designs Codes and Cryptography, vol. 22, pp. 107-121, Mar 2001.
[5] G. L. Matthews and T. W. Michel, 'One-point codes using places of higher degree,' IEEE Transactions on Information Theory, vol. 51, pp. 1590-1593, Apr 2005.
[6] H. Niederreiter and C. Xing, 'Low-Discrepancy Sequences and Global Function Fields with Many Rational Places,' Finite Fields and Their Applications, vol. 2, pp. 241-273, 1996.
[7] H. Stichtenoth, Algebraic function fields and codes, 2nd ed. Berlin: Springer, 2009.
[8] K. Yang and P. V. Kumar, 'On the true minimum distance of Hermitian codes,' in Coding Theory and Algebraic Geometry. vol. 1518, H. Stichtenoth and M. Tsfasman, Eds., ed: Springer Berlin Heidelberg, 1992, pp. 99-107.
[9] M. Homma and S. J. Kim, 'Goppa codes with Weierstrass pairs,' Journal of Pure and Applied Algebra, vol. 162, pp. 273-290, Aug 24 2001.
[10] S. J. Kim, 'On the Index of the Weierstrass Semigroup of a Pair of Points on a Curve,' Archiv Der Mathematik, vol. 62, pp. 73-82, Jan 3 1994.
[11] W. Bosma, J. Cannon, and C. Playoust, “The MAGMA algebra system, I; The user language.” J.Symb. Comp., vol.24, pp. 235-265, 1997.
[12] W. Hu and Z. Wang, 'Improvements On The Distance of One-Point Codes Using Places of Higher Degree,' Procedia Engineering, vol. 15, pp. 1711-1715, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62437-
dc.description.abstract1982年,Tsfasman, Vladut 和 Zink這三個數學家利用代數幾何碼序列發現了一個比有名的GV界更好的線性碼信息傳輸速度下界,並稱之爲TVZ界。此發現引起了編碼學家們對代數幾何碼的興趣。其中,基於埃爾米特函數域有著很好的特性, 埃爾米特碼被徹底的研究了。在文獻[8]中,典型的埃爾米特單點碼的最小距離已被一一算出了。
本論文將會討論幾種不同的埃爾米特碼,其中包括典型的埃爾米特單點碼、用大於一次的點造出的埃爾米特單點碼,以及埃爾米特多點碼。 論文的焦點會放在好的埃爾米特碼的構造方法。此外,本論文也會討論某些比典型埃爾米特單點碼更好的埃爾米特碼的存在性。最後,在例子中會展示一些埃爾米特碼的實際計算,以證明所造出來的碼確實會比典型的埃爾米特單點碼更好。
zh_TW
dc.description.abstractIn 1982, Tsfasman, Vladut and Zink discovered a lower bound for the information rates of linear codes, known as the TVZ Bound, using sequences of algebraic geometry codes (AG codes). This discovery had brought the attention of coding theorists to AG codes. In this correspondence, the Hermitian codes has been study thoroughly, owing to the remarkable properties of Hermitian funciton fields. In fact, the true minimal distance of the classical one-point Hermitian codes has been dertermined in [8].
In this thesis, several families of Hermitian codes are discussed; namely, the classical one-point Hermitian codes, the one-point Hermitian codes supported by a place of degree higher than one, and the multple-point Hermitian codes. The focus of this thesis is laid on the consturction of some good Hermitian codes. Besides that, the existence of some Hermitian codes with parameters improved over the much-studied classical one-point Hermitian codes are also discussed. Last but not least, some concrete examples of Hermitian codes are constructed to show the improvement of parameters over the classical one-point Hermitian codes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:02:31Z (GMT). No. of bitstreams: 1
ntu-102-R00221029-1.pdf: 517798 bytes, checksum: 18c61c8df45dbf1ed2094e69f6575cea (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgement ………………………………………………………………………………………………ii
摘要 ……………………………………………………………………………………………………………………………iii
Abstract …………………………………………………………………………………………………………………iv
Table of Contents ……………………………………………………………………………………………v
List of Figures ………………………………………………………………………………………………vi
List of Tables ………………………………………………………………………………………………vii
Introduction …………………………………………………………………………………………………viii
Chapter 1 Preliminaries ………………………………………………………………………1
1.1 Algebraic Function Fields …………………………………………………1
1.2 Algebraic Geometry Codes ……………………………………………………5
1.3 Hermitian Function Fields …………………………………………………6
Chapter 2 One-point Hermitian Codes ………………………………………8
2.1 Classical One-point Hermitian Codes ………………………8
2.2 One-Point Hermitian Codes Supported by a Place
of Higher Degree ……………………………………………………………11
Chapter 3 Multiple-point Hermitian Codes ………………………19
3.1 Multiple-point AG Codes ……………………………………………………19
3.2 Two-point Hermitian Codes ………………………………………………26
Chapter 4 Further Improvements on Parameters of
Hermitian Codes …………………………………………………………………39
Conclusion ……………………………………………………………………………………………………………56
References ……………………………………………………………………………………………………………58
dc.language.isoen
dc.subject碼的參數zh_TW
dc.subject埃爾米特碼zh_TW
dc.subject代數幾何碼zh_TW
dc.subject編碼學zh_TW
dc.subject埃爾米特函數域zh_TW
dc.subjectHermitian Function Fieldsen
dc.subjectParameters of Codesen
dc.subjectHermitian Codesen
dc.subjectAlgebraic Geometry Codesen
dc.subjectCoding Theoryen
dc.title埃爾米特碼zh_TW
dc.titleHermitian Codesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王姿月(Julie Tzu-Yueh Wang),姚為成(Wei-Chen Yao)
dc.subject.keyword埃爾米特碼,代數幾何碼,編碼學,埃爾米特函數域,碼的參數,zh_TW
dc.subject.keywordHermitian Codes,Algebraic Geometry Codes,Coding Theory,Hermitian Function Fields,Parameters of Codes,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2013-07-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
505.66 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved