請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62405
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉鋼(Kang Liu) | |
dc.contributor.author | Hau Sin Chan | en |
dc.contributor.author | 陳浩欣 | zh_TW |
dc.date.accessioned | 2021-06-16T16:02:09Z | - |
dc.date.available | 2023-02-01 | |
dc.date.copyright | 2021-02-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-05 | |
dc.identifier.citation | 中央研究院詞庫小組,1998。「中研院平衡 語料庫詞類標記集」。http://ckipsvr.iis.sinica.edu.tw/papers/category_list.doc (2020/07/20) 台灣趨勢研究,2019。「市場調查:國外旅遊預訂平臺使用行為調查(2018年)」。臺北: 台灣趨勢研究。(http://www.twtrend.com/share_cont.php?id=67) 交通部觀光局,2020。「2019國內主要觀光遊憩據點遊客人數月別統計」。(https://admin.taiwan.net.tw/FileUploadCategoryListC003330.aspx?CategoryID=2638da16-f46c-429c-81f9-3687523da8eb appname=FileUploadCategoryListC003330) (2020/06/25) 交通部觀光局,2020。「2019年 臺灣旅遊狀況調查」。(https://admin.taiwan.net.tw/FileUploadCategoryListC003340.aspx?CategoryID=7b8dffa9-3b9c-4b18-bf05-0ab402789d59) (2020/09/20) 杜貞瑩,2017。「遊憩環境、遊憩體驗與滿意度關聯性之研究」,《觀光與休閒管理期刊》。5卷,特刊1,114-129。 侯佩妤、陳俊智、包曉天,2017。「電子口碑訊息和訂價:以臺灣連鎖經營酒店為例」,《商學略報》。9卷,2期,103-118。 陳宜檉、蕭雅文、林怡倩,2017。「旅遊社群網站網路口碑信任對旅遊商品購買意願影響之研究:延伸科技接受模式的理論觀點」,《觀光與休閒管理期刊》。5卷,1期,28-41。 陳韋帆、古倫維,2018。「中文情感語意分析套件CSentiPackage 發展與應用」。《圖書館學與資訊科學》, 44卷,1期,24 -41。 孫順智,2002。「邁向內容精確取向的翻譯」。《翻譯學研究期刊》,7期,53-74。 財團法人台灣網路資訊中心,2019。「2019 台灣網路報告」。(https://report.twnic.tw/2019/) (2020/6/20) 黃純敏,2019。「基於語彙鏈、格律斷詞方法以主題模型進行古詩詞探勘與分析」,《中華民國資訊管理學報》,26卷,3期,275-306。 黃俊堯、柳秉佑,2016。「消費者線上口碑與評論研究:國內外相關文獻回顧與討論」,《臺大管理論叢》。26卷,3期,215-256。 遊和正,黃挺豪,陳信希,2012。「領域相關詞彙極性分析及檔情緒分類之研究」,《中文計算語言學期刊》,17卷,4期,33-47。 董振東,董強(1999),“知網”, http://www.keenage.com 廖強棋、謝宗翰,2018。「應用情緒分析技術於網路餐廳評論」,臺灣網際網路研討會。 Alaei, Ali Reza, Susanne Becken and Bela Stantic, 2019. “Sentiment Analysis in Tourism: Capitalizing on Big Data,”Journal of Travel Research. 58(2):175-191. Annisa, Rossi, Isti Surjandari and Zulkarnain, 2019. “Opinion Mining on Mandalika Hotel Reviews Using Latent Dirichlet Allocation,'Procedia Computer Science. 161:739-746. Arndt, Johan A., 1967. “Role of Product-Related Conversations in the Diffusion of a New Product,”Journal of Marketing Research. 4(8):291-295. Bastani, Kaveh, Hamed Namavari and Jeffrey Shafferac, 2019. “Latent Dirichlet Allocation (LDA) for Topic Modeling of the CFPB Consumer Complaints,” Expert Systems with Applications. 127: 256-271. Blei, David M., 2012. “Probabilistic Topic Models,” Communications of the ACM. 55:77–84. Blei, David M., Andrew Y. Ng and Michael I. Jordan, 2003. “Latent Dirichlet Allocation,” Journal of Machine Learning Research. 3 (2003) 993-1022 Chang, Yung-Chun, Chih-Hao Ku and Chien-Hung Chen, 2020. “Using Deep Learning and Visual Analytics to Explore Hotel Reviews and Responses,” Tourism Management. 80(2020) Chintagunta, Pradeep K., Shyam Gopinath and Sriram Venkataraman, 2010. “The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets,” Marketing Science. 29(5): 944-957. Churchill, Gilbert A. Jr., and Carol. Surprenant, 1982. “An Investigation into the Determinants of Customer Satisfaction,” Journal of Marketing Research. 19(4): 491-504. Dickinger, Astrid ., Lidija Lalicic., and Josef Mazanec, 2017.“Exploring the Generalizability of Discriminant Word Items and Latent Topics in Online Tourist Reviews,” International Journal of Contemporary Hospitality Management. 29(2):803-816. Marrese-Taylor, Edison, Juan D.Velásquez, Felipe Bravo-Marquez and Yutaka Matsuo, 2013. “Identifying Customer Preferences about Tourism Products Using an Aspect-based Opinion Mining Approach,” Procedia Computer Science. 22:182-191. Efron, B., 1979. “Bootstrap methods: Another look at the jackknife,” Annals of Statistics. 7: 1-26. Feldman, Ronen, 2013. “Techniques and Applications for Sentiment Analysis,” Communications of the ACM. 56(4):82-89. Geetha, M., Pratap Singha and Sumedha Sinha, 2017. “Relationship between Customer Sentiment and Online Customer Ratings for Hotels - An Empirical Analysis,” Tourism Management. 61:43-54. George, Mino, P. Beaulah Soundarabai and Karthik Krishnamurthi, 2017. “Impact of Topic Modelling Methods and Text Classification Technigues in Text Mining: A Survey,” International Journal of Advances in Electronics and Computer Science. 4(3): 72-77. Guo, Yue., Stuart J.Barnes, and Qiong Jia, 2017.“Mining Meaning from Online Ratings and Reviews: Tourist Satisfaction Analysis Using Latent Dirichlet Allocation,” Tourism Management. 59: 467-483. Harsha Patil , P. M. Mane, 2015. “Survey on Product Review Sentiment Analysis with Aspect Ranking,” International Journal of Science and Research. 4(12):1783-1786 Hownet 知網,網址: http://www.keenage.com/html/c_index.html Hu, Feng, Thorsten Teichert, Yong Liu, Hongxiu Li and Elina Gundyreva, 2019b.“Evolving Customer Expectations of Hospitality Services: Differences in attribute effects on satisfaction and Re-Patronage,”Tourism Management. 74: 345-357. Hu, Nan, Indranil Bose, Noi Sian Koh and Ling Liu, 2012. “Manipulation of Online Reviews: An Analysis of Ratings, Readability, and Sentiments,” Decision Support Systems. 52(3): 674-684. Hu, Xingbao (Simon), Yang Yang and Sangwon Park, 2019a. “A Meta-Regression on the Effect of Online Ratings on Hotel Room Rates,” International Journal of Contemporary Hospitality Management. 31(12): 4438-4461. Huang, Peng., Nicholas H. Lurie, Sabyasachi Mitra, 2009. “Searching for Experience on the Web: An Empirical Examination of Consumer Behavior for Search and Experience Goods,” Journal of Marketing. 73(2):55-69. Ögüt, Hulisi and Bedri Kamil Onur Taş, 2012. “The influence of internet customer reviews on the online sales and prices in hotel industry,” The Service Industries Journal. 32(2):197-214 Jacques Bulchand-Gidumal, Santiago Melian-Gonzalez and Beatriz Gonzalez Lopez-Valcarce, 2011. “Improving Hotel Ratings by Offering Free Wi-Fi,” Journal of Hospitality and Tourism Technology. 2(3):235-246. Jalilvand, M. R., Sharif Shekarchizadeh Esfahani., and Neda Samiei, 2011. “Electronic Word-of-Mouth: Challenges and Opportunities,” Procedia Computer Science. 3: 42-46. Kahneman, Daniel, and Amos Tversky, 1979. “Prospect Theory: An Analysis of Decision under Risk,” Econometrica. 47(2), 263-291. Krishnan, Balaji C. and Michael D. Hartline, 2001. “Brand Equity: Is it More Important in Services? ”Journal of Services Marketing. 15(5): 328-342. Cited by Tan, Wee-Kheng., Yi-Der Yeh., Chih-Chin Yang., Chia-Yen Tang, 2012. “A Study on the Impact of Internet on the Experience Attributes of Tourism and Hospitality Products, and the Search and Purchase Behavior of Consumers,”Electronic Commerce Studies. 10(1): 97-121. Lackermair, Georg, Daniel Kailer and Kenan Kanmaz, 2013. “Importance of Online Product Reviews from a Consumer's Perspective,’’ Advances in Economics and Business. 1(1): 1-5. Li, Gang, Rob Law, Huy QuanVu and JiaRong, 2013.“Discovering the Hotel Selection Preferences of Hong Kong Inbound Travelers Using the Choquet Integral,'Tourism Management. 36: 321-330. Liu, Bing, 2012. “Sentiment Analysis and Opinion Mining,” Synthesis Lectures on Human Language Technologies, 5(1): 1–167 Liu, Yi, Kaixuan Huang, Jigang Bao and Kaiqi Chen, 2019. “Listen to the Voices from Home: An Analysis of Chinese Tourists’ Sentiments Regarding Australian Destinations,” Tourism Management. 71: 337-347. Liu, Zelong, Maozhen Li1, Yang Liu and Mahesh Ponraj, 2011. “Performance Evaluation of Latent Dirichlet Allocation in Text Mining,'Conference: Proceeding of the Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shanghai, China. Needham, Mass., 2019. “Online Reviews Remain a Trusted Source of Information When Booking Trips, Reveals New Research,'PRNewswire, July 16. (https://tripadvisor.mediaroom.com/2019-07-16-Online-Reviews-Remain-a-Trusted-Source-of-Information-When-Booking-Trips-Reveals-New-Research) (2019/11/20) NLPLAB-NTUSD,網址: http://academiasinicanlplab.github.io/ (2020/7/1) Pang, Bo, Lillian Lee and Shivakumar Vaithyanathan, 2002. “Thumbs up Sentiment Classification Using Machine Learning Techniques,” Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Stroudsburn, USA Park, Sangwon and Juan L. Nicolau, 2015. “Asymmetric Effects of Online Consumer Reviews,” Annals of Tourism Research. 50: 67-83. Phillips, Paul , Nuno Antonio, Ana de Almeida and Luís Nunes, 2019. “The Influence of Geographic and Psychic Distance on Online Hotel Ratings,” Journal of Travel Research. 59(4): 722-741.' Pratiwi, Asriyanti Indah and Kang Adiwijaya, 2018.“On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis,'Applied Computational Intelligence and Soft Computing. 2018(8):1-5. Radojevica, Tijana, Nemanja Stanisic, Nenad Stanic and Rob Davidson, 2018. “The Effects of Traveling for Business on Customer Satisfaction with Hotel Services,” Tourism Management. 57: 326-341. Rhee,Hosung Timothy, and Sung-ByungYang, 2015. “Does Hotel Attribute Importance Differ by Hotel? Focusing on Hotel Star-classifications and Customers’ Overall Ratings,” Computers in Human Behavior. 50:576-587. Roberts, John H., and James M. Lattin, 1991. “Development and Testing of a Model of Consideration Set Composition,” Journal of Marketing Research. 28(4): 429–440. Schuckert, Markus., Xian-Wei Liu and Rob Law, 2015.“A Segmentation of Online Reviews by Language Groups: How English and non-English Speakers Rate Hotels Differently,” International Journal of Hospitality Management. 48: 143-149. Cited by Xu, Xun., 2018. “Examining an Asymmetric Effect between Online Customer Reviews Emphasis and Overall Satisfaction Determinants,”Journal of Business Research. Online 11 September. (doi: 10.1016/j.jbusres.2018.07.022) (2019/11/05) Sharifi, Shahin, 2019. “Examining the Impacts of Positive and Negative Online Consumer Reviews on Behavioral Intentions: Role of Need for Cognitive Closure and Satisfaction Guarantees,” Journal of Hospitality Marketing Management. 28(4):397-426. Snehasish Banerjee and Alton Y.K.Chua, 2016. “In search of patterns among travellers' hotel ratings in TripAdvisor,” Tourism Management. 53 (2016): 125-131 Statista, 2019. “Internet usage worldwide,” (https://www.statista.com/statistics/265147/number-of-worldwide-internet-users-by-region/) (2020/07/08) Taecharungroj, Viriya., and Boonyanit Mathayomchan, 2019. “Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand,” Tourism Management. 75: 550-568. Tan, Wee-Kheng., Yi-Der Yeh., Chih-Chin Yang and Chia-Yen Tang, 2012. “A Study on the Impact of Internet on the Experience Attributes of Tourism and Hospitality Products, and the Search and Purchase Behavior of Consumers,” Electronic Commerce Studies. 10(1): 97-121. Torres, Edwin N., Dipendra Singh., and April Robertson-Ring, 2015.“Consumer reviews and the creation of booking transaction value: Lessons from the hotel industry,”International Journal of Hospitality Management. 50: 77-83. Cited by Xu, Xun., 2018. “Examining an asymmetric effect between online customer reviews emphasis and overall satisfaction determinants,”Journal of Business Research. Online 11 September. (doi: 10.1016/j.jbusres.2018.07.022) (2019/11/05) Vermeulen, Ivar E., and Daphne Seegers, 2009. “Tried and tested: The Impact of Online Hotel Reviews on Consumer Consideration,”Tourism Management. 30(1): 123-127. Wang, Hongning, Yue Lu, Chengxiang Zhai, 2010. “Latent Aspect Rating Analysis on Review Text Data: A Rating Regression Approach,'Conference: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA. Wang, Jenq-Haur, and Chi-Ching Lee, 2011. 'Unsupervised Opinion Phrase Extraction and Rating in Chinese Blog Posts,' Proceedings of IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA, pp. 820-823, World Travel and Tourism Council, 2019. TAIWAN 2019 Annual Research: Key Highlights. London: World Travel and Tourism Council. (https://www.wttc.org/economic-impact/country-analysis/country-data/) (2019/11/21) World Travel and Tourism Council, 2019. World, Transformed: Megatrends and Their Implications for Travel Tourism. London: World Travel and Tourism Council. (https://www.wttc.org/publications/2019/megatrends-2019/)(2019/11/21) Xiang, Zheng, Qianzhou Du, Yufeng Ma and Weiguo Fan, 2017.“A Comparative Analysis of Major Online Review Platforms: Implications for Social Media Analytics in Hospitality and Tourism,'Tourism Management. 58: 51-65. Xie, Karen, Zili Zhang and Julie Zhang, 2014. “The Business Value of Online Consumer Reviews and Management Response to Hotel Performance,' International Journal of Hospitality Management. 43:1-12 XunXu, 2020. “Examining an Asymmetric Effect between Online Customer Reviews Emphasis and Overall Satisfaction Determinants,” Journal of Business Research. 106:196-210. Yang, Y., and J. O.Pedersen, 1997. “A Comparative Study on Feature Selection in Text Categorization,” ICML '97: Proceedings of the Fourteenth International Conference on Machine Learning, 412-420. Yang, Yiming, and Xin Liu, 1999. “A re-examination of Text Categorization Methods,” Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. Berkeley, California, United States, ACM Press , pp. 42-49 Yao, Jiani, Hongwei Wang and Pei Yin, 2011. “Sentiment Feature Identification from Chinese Online Reviews,” Communications in Computer and Information Science. 201:315-322. Ye, Qiang, Rob Law, Bin Gu and Wei Chen, 2011. “The Influence of User-Generated Content on Traveler Behavior: An Empirical Investigation on the Effects of E-Word-of-Mouth to Hotel Online Bookings,” Computers in Human Behavior. 27(2): 634-639 Ye, Qiang, Ziqiong Zhang and Rob Law, 2009. “Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches,” Expert Systems with Applications. 36(3):652-6535. Yohan Jo, and Alice Oh, 2011. “Aspect and Sentiment Unification Model, ” Conference: Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12, 2011 Zhu, Feng, and Xiaoquan Zhang, 2010. “Impact of Online Consumer Reviews on Sales: The Moderating Role of Product and Consumer Characteristics,” Journal of Marketing. 74(2):133-148. Zhu, Jingbo, Chunliang Zhang and Matthew Y. Ma, 2012. “Multi-Aspect Rating Inference with Aspect-Based Segmentation,” IEEE Transactions on Affective Computing. 3(4):469-481. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62405 | - |
dc.description.abstract | 隨網路時代的普及,旅行者在安排旅行住宿時多以網路線上預訂,而這樣的的預訂方式加上飯店住宿的體驗性商品特性,讓旅行者在預定前會非常在意過去的線上評等、評論,作為參考及決策的依據,故線上評等及評論對於消費者及業者來說都是重要指標。在進行評等及評論時,消費者會根據不同的面向去評斷該次住宿的體驗,如 Tripadvisor 就提供消費者 6 種不同的面向去進行評價,而文字評論也讓消費者能更詳細描述整個住宿體驗之感受。因此本研究透過 Tripadvisor 網站中臺北地區的飯店資料,透過文本分析將評論進行主題特徵分類及情感分析,探討評等及評論,研究消費者評論與面向評等之間的關係,並從評論中找出新的潛在面向。此外,探討展望理論中所提到在得到同等程度的獲利與損失時,會產生損失影響較大的非理性思考,本研究將應用正、負情感分數對評等的影響來驗證。 研究結果顯示評論是能夠解釋消費者給出的面向評等,而也從評論中找出餐廳飲食及環境設施這兩種面向,說明了對於業者及潛在消費者來說在缺少面向評等資訊時,透過消費者評論也可了解其面向感受。業者在想提升住宿體驗時除了原本的 6 種面向,也可在飲食及環境上檢討改進。此外也驗證了在增加相同程度的正、負面情緒時,負面情緒所帶來的影響更大,從消費者評等上來看,負面情緒的增加比起正面情緒會讓消費者在給出評等上扣更多的分數,因此業者若要提高自家的評等,對於負面評論的重視及處理要比正面評論更加積極。 | zh_TW |
dc.description.abstract | Nowadays, a lot of people choose to book their hotel via online. For those who use online booking are paying more attention to online ratings and reviews. That means all of ratings and reviews are very important to customers and operators. Customers will giveratings and write reviews according to experience of different aspects, for example, Tripavisor provides 6 different aspects for customers to evaluate. Meanwhile, text reviews can describe the experience of accommodation with more details. Therefore, this studyuses information of hotels in Taipei area to classify reviews by topic characteristics and sentiment analysis through text analysis, explore the relationship between ratings and reviews, and find out other potential aspects from reviews. In addition, the prospect theory mentioned that if there were same level of profit and loss, it would generate irrational thoughts that causing more impact of loss. This study will use the impact of reviews against positive and negative sentiment score to verify. The results of the study shows that reviews will affect the oriented ratings given by customers, while LDA used to find out two aspects from the reviews, which is food and environmental facilities. This result proves that while there is a lack of other type of aspects, we still can understand its orientation and feelings through reviews. In addition to the original six aspects, operators can also improve food and environment if they want to improve the accommodation experience. Furthermore, it proves that the influence of positive and negative sentiment scores on ratings is asymmetrical, and the result has again verified the prospect theory. From the perspective of customer ratings, the increment of negative sentiment will cause the customers to give less score. Therefore, if operators want to improve their own ratings, they should pay attention and deal with negative reviews more than positive reviews. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:02:09Z (GMT). No. of bitstreams: 1 U0001-0302202112224500.pdf: 1812813 bytes, checksum: 354bb49cf5d166c8e9b2eef071fabf3d (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 viii 第1章、緒論 1 第2章 文獻回顧 8 2.1飯店線上評論評等相關研究 8 2.1.1飯店線上評論 8 2.1.2飯店評等 9 2.2 評論主題特徵 10 2.2.1 特徵選取 10 2.2.2 主題模型 11 2.3 情感分析 13 第3章、研究方法 16 3.1 資料蒐集與前處理 17 3.1.1 資料蒐集 17 3.1.2資料前處理 18 3.2 資料主題特徵分類 20 3.2.1 面向分割法 20 3.2.2 潛在狄利克雷分佈 23 3.3 情感分析 26 3.3.1 情感分數 26 3.3.2程度詞、否定詞 28 3.3.3 情感分數之計算方法 29 3.4 多元迴歸模型 30 3.4.1 情感分數對面向評等之實證模型設定 37 3.4.2 潛在面向主題實證模型 37 3.4.3 正負情感分數實證模型 38 第4章、實證結果與分析 39 4.1 資料之敘述統計 39 4.2 主題特徵分類結果 41 4.3 LDA模型主題分類結果 44 4.4 情感分析結果 45 4.5 LDA潛在主題分類及情感分析結果 47 4.6 迴歸分析 51 4.6.1 情感分數對面向評等之實證結果 51 4.6.2 潛在面向主題實證結果 54 4.6.3 正負情感分數實證結果 61 第5章 結論與建議 65 5.1 結論 65 5.2 研究改進與限制 66 參考文獻 68 附錄 78 附表1 中研院斷詞詞性標記表 78 附表2 程度詞表 80 附表3 面向評等之估計結果 81 附表4 餐廳飲食影響總評等之估計結果(控制面向評等填答) 84 附表5 環境設備影響總評等之估計結果(控制面向評等填答) 92 附表6 正、負情感分數對總評等之估計結果 100 附表7 正、負情感分數對面向評等之估計結果 101 | |
dc.language.iso | zh-TW | |
dc.title | 線上評論對消費者各項面向評等之相關性研究:以 Tripadvisor 為例 | zh_TW |
dc.title | The relationship between aspect ratings and consumers' reviews: A case study of Tripadvisor | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉家瑜(Chia-Yu Yeh),陳淑玲(Shu-Ling Chen) | |
dc.subject.keyword | 文本分析,面向分割法,潛在狄利克雷分配,情感分析,展望理論,多元迴歸, | zh_TW |
dc.subject.keyword | Text Mining,Aspect Segmentation Algorithm,Latent Dirichlet Allocation,Sentiment Analysis,Prospect Theory,Multiple Linear Regression, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU202100441 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業經濟學研究所 | zh_TW |
顯示於系所單位: | 農業經濟學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0302202112224500.pdf 目前未授權公開取用 | 1.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。