Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62395
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬小康
dc.contributor.authorFu-Min Fangen
dc.contributor.author方富民zh_TW
dc.date.accessioned2021-06-16T13:45:51Z-
dc.date.available2013-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-08
dc.identifier.citation1. 衣寶廉, “燃料電池─原理與應用”, 五南圖書出版股份有限公司, 2005.
2. K. Walter, “Science & technology”, Lawrence Livermore National Laboratory, www.llnl.gov/str/Mitlit.html, 1997.
3. J. Larminie, A. Dicks, “Fuel cell systems explained”, John Wiley & Sons, Second Edition, pp.45-60, 2003.
4. E. Hontanon, M. J. Escudero, “Optimization of flow-field in polymer electrolyte membrane fuel cell using computational fluid dynamics techniques”, Journal of Power Sources, 86, pp.363-368, 2000.
5. R. Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cell”, Journal of Power Source, 93, pp.25-31, 2001.
6. C. Bao, M. Ouyang, B. Yi, “Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—I. Control-oriented modeling”, International Journal of Hydrogen Energy, 31, pp.1879-1896, 2006.
7. C. Bao, M. Ouyang, B. Yi, “Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—II. Linear and adaptive nonlinear control”, International Journal of Hydrogen Energy, 31, pp.1897-1913, 2006.
8. J. L. He, J. W. Ahn, S. Y. Choe, “Analysis and control of a fuel delivery system considering a two-phase anode model of the polymer electrolyte membrane fuel cell stack”, Journal of Power Sources, 196, pp.4655-4670, 2011.
9. M. Meiler, D. Andre, O. Schmid, E.P. Hofer, “Nonlinear empirical model of gas humidity-related voltage dynamics of a polymer-electrolyte-membrane fuel cell stack”, Journal of Power Sources, 190, pp.56-63, 2009.
10. M. Blanco, D. P. Wilkinson, H. J. Wang, “Application of water barrier layers in a proton exchange membrane fuel cell for improved water management at low humidity conditions”, International Journal of Hydrogen Energy, 36, pp.3635-3648, 2011.
11. X. Li, Z. H. Deng, D. Wei, C. S. Xu, G. Y. Cao, “Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model”, Energy Conversion and Management, 52, pp.3265-3274, 2011.
12. J. W. Ahn, S. Y. Choe, “Coolant controls of a PEM fuel cell system,” Journal of Power Sources, 179, pp.252-264, 2008.
13. X. C. Yu, B. Zhou, A. Sobiesiak, “Water and thermal management for Ballard PEM fuel cell stack”, Journal of Power Sources, 147, pp.184-195, 2005.
14. C. Bao, M. G. Ouyang, B. L. Yi, “Analysis of the water and thermal management in proton exchange membrane fuel cell systems”, Journal of Hydrogen Energy, 31, pp.1040-1057, 2006.
15. Y. Tang, W. Yuan, M. Q. Pan, Z. T. Li, G. Q. Chen, Y. Li, “Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes”, Journal of Applied Energy, 87, pp. 1410-1417, 2010.
16. D. Candusso, F. Harel, A. De Bernardinis, X. Francois, M.C. Pera, D. Hissel, P. Schott, G. Coquery, J.-M. Kauffmann, “Characterisation and modelling of a 5 kW PEMFC for transportation applications”, Journal of Hydrogen Energy, 31, pp.1019-1030, 2006.
17. D. Candusso, A.D. Bernardinis, M.C. Pera, F.Harel, X. Francois, D. Hissel, G. Coquery, J.M. Kauffmann, “Fuel cell operation under degraded working modes and studyof diode by-pass circuit dedicated to multi-stack association”, Energy Conversion and Management, 49, pp.880-895, 2008.
18. H. K. Ma, J. S. Wang, Y. T. Chang, “Development of a novel pseudo bipolar piezoelectric proton exchange membrane fuel cell with nozzle and diffuser”, Journal of Power Sources, 196, pp.3766-3772, 2011.
19. H. K. Ma, J. S. Wang, W. H. Su, W. Y. Cheng, “The performance of a novel pseudo-bipolar bi-cell piezoelectric proton exchange membrane fuel cell with a smaller nozzle and diffuser”, Journal of Power Sources, 196, pp.7564-7571, 2011.
20. H. K. Ma, H. M. Cheng, W. Y. Cheng, F. M. Fang, W. F. Luo, “Development of a piezoelectric proton exchange membrane fuel cell stack (PZT-Stack)”, Journal of Power Sources, 240, pp.314-322, 2013.
21. A. Shahin, B. Huang, J. P. Martin, S. Pierfederici, B. Davat, “New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio”, Energy Conversion and Management, 51, pp.56-63, 2010.
22. A. D. Bernardinis, M. C. Pera, J. Garnier, D. Hissel, G. Coquery, J. M. Kauffmann, “Fuel cells multi-stack power architectures and experimentalvalidation of 1 kW parallel twin stack PEFC generator based onhigh frequency magnetic coupling dedicated to on board power unit”, Energy Conversion and Management, 49, pp. 2367-2383, 2008.
23. A. D. Bernardinis, D. Candusso, F. Harel, X. Francois, G. Coquery, “Experiments of a 20 cell PEFC operating under fault conditions with diode by-pass circuit for uninterrupted power delivery”, Energy Conversion and Management, 51, pp. 1044-1054, 2010.
24. S. J. Andreasen, L. Ashworth, I. N. M. Remon, and S. K. Kar, “Directly connected series coupled HTPEM fuel cell stacks toa Li-ion battery DC bus for a fuel cell electrical vehicle”, International Journal of Hydrogen Energy, 33, pp.7137 -7145, 2008.
25. Ballard 1310 Fuel Cell Stack Product Manual and Integration Guide, 2011.
26. J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, 2003.
27. Earth Policy Institute, http://www.earth-policy.org/indicators/C52.
28. NASA GISS, http://data.giss.nasa.gov/gistemp/graphs_v3/.
29. Fuel Cells, https://zh.wikipedia.org/wiki/File:Solid_oxide_fuel_cell_protonic.svg.
30.Roads2HyCom, http://www.ika.rwth-aachen.de/r2h/index.php/Introduction_to_
PEFC_Operation
31.nell semiconductor, http://www.nellsemi.com/nell-en/products_dt.php?p_id=00012
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62395-
dc.description.abstract本研究為開發一氣體與水管理系統,藉以操作5 kW質子交換膜燃料電池堆(Ballard 1310),使燃料電池的使用效率提升。原設計之各子系統中,包含過多外接感測元件造成管路過長,而出現熱耗散及不均勻的現象,使供應之氣體溫度下降;藉由減少各系統中的感測元件及管路的縮短設計,能有效提升供應氣體之溫度,提升燃料電池堆的性能。為了使單一5 kW燃料電池堆之效能達最佳化,本研究亦針對其他關鍵參數進行實驗分析,其中氫氣及空氣的相對濕度對於電池堆性能表現有很大的影響,對於輸入氣體進行適當的加濕是很重要的,此外,分析氫氣於各負載下的消耗情形,有助於設計氫氣之供應流量及氫氣的再循環機制,而提升氫氣的使用效率,於高負載下,本研究亦探討單電池堆在有無氫氣循環回收狀況下,整體發電效率之差異。5 kW燃料電池堆在控制系統的安全監控下,能於高效能之狀況下穩定操作,並做為未來高瓦數之燃料電池堆開發之基礎,而為使總輸出功率可達10 kW,另一5 kW燃料電池堆系統將與原系統做串並聯組裝,且因其效能輸出幾乎一致,兩電池堆將可直接以二極體作電路上的串並聯而有長時間且穩定之高功率輸出。zh_TW
dc.description.abstractIn this study, fuel, oxidant supply and cooling systems with a microcontroller unit (MCU) were developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC) stacks (Ballard 1310). The original design of the subsystems, which had a longer pipeline and excessive control sensors, caused a large pressure drop and high power consumption. However, with an MCU, the fuel consumption and humidity can be effectively controlled within a proper purge period. Additionally, this study includes stack performances under different hydrogen recycling modes and the direct electrical coupling of two similar 5 kW stacks with diodes to obtain a higher power output. The result showed that the efficiency of the 5 kW stack is 43.46 % with a purge period of 2 minutes with hydrogen recycling and that the hydrogen utilization rate, μf, is 66.31 %. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement) is 9.52 kW.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:45:51Z (GMT). No. of bitstreams: 1
ntu-102-R00522306-1.pdf: 8500421 bytes, checksum: 08a3eb4b4ac67c9a762986b6aa079188 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents第一章 緒論.................................................1
1.1前言....................................................1
1.2燃料電池簡介..............................................1
1.2.1燃料電池的分類..........................................1
1.2.2燃料電池基本原理及特性....................................2
1.2.3燃料電池反應所需氧氣及氫氣量...............................4
1.2.4 燃料電池之極化曲線......................................5
1.3質子交換膜燃料電池(PEMFC).................................6
1.3.1 PEMFC之簡介...........................................6
1.3.2 PEMFC之基本結構.......................................7
1.4 PEMFC之堆疊方式.........................................8
1.5文獻回顧.................................................9
1.6研究目的................................................11
第二章 實驗設備與方法........................................12
2.1 Ballard 1310燃料電池堆簡介..............................12
2.2 Ballard 1310燃料電池之周邊子系統設計......................13
2.2.1氫氣供應系統...........................................13
2.2.1.1氫氣供應系統周邊元件介紹...............................13
2.2.1.2氫氣供應系統架設......................................15
2.2.2氧化物供應系統.........................................15
2.2.2.1氧化物供應系統之周邊元件介紹............................15
2.2.2.2氧化物供應系統架設....................................17
2.2.3冷卻系統..............................................17
2.2.3.1冷卻系統之周邊元件介紹.................................17
2.2.3.2冷卻系統架設.........................................18
2.2.4 MCU (Micro Controller Unit) 控制系統.................19
2.3 Ballard 1310 5 kW燃料電池堆之全系統整合封裝...............20
2.4 電池堆之效率計算.........................................20
2.5 燃料電池堆串並聯實驗架構之設計.............................21
第三章 結果與討論............................................23
3.1 氫氣供應系統之改良前後對氫氣溫度的影響.......................23
3.2 氧化物供應系統改良前後對空氣溫度之影響.......................24
3.3 子系統管路縮短設計對燃料電池性能的影響.......................24
3.4 空氣及氫氣濕度對燃料電池性能之影響..........................25
3.5 各負載下氫氣之消耗情形....................................26
3.6 單一電池堆有無氫氣循環機制及purge週期長短之效率分析...........27
3.6.1相同purge週期下,有無氫氣循環機制之電壓輸出比較.............29
3.6.2 有氫氣循環機制下,延長purge週期之效能輸出比較..............29
3.6.3 無氫氣循環機制下,縮短purge週期之效能輸出比較..............30
3.7 兩5 kW燃料電池堆之串並聯實驗..............................30
3.7.1 兩顆5 kW燃料電池堆之性能測試資料及結果分析.................31
3.7.2 電池堆並聯下,固定負載電壓或電流時各電池堆之性能表現.........31
3.7.3 單台燃料電池堆與電池堆並聯情況下之輸出比較.................32
3.7.4 電池堆串聯下,固定負載電流或電壓時各電池堆之性能表現.........33
3.7.5 單台燃料電池堆與電池堆串聯情況下之輸出比較.................34
3.8 電池堆串聯或並聯下之長時間穩定性分析........................34
第四章 結論與建議............................................35
4.1 結論..................................................35
4.2 建議..................................................36
參考文獻...................................................37
附錄......................................................41
dc.language.isozh-TW
dc.title5kW質子交換膜燃料電池堆以二極體串並聯之氣體與水管理系統研究zh_TW
dc.titleStudy of Gas and Water Management Systems for 5 kW PEMFC Stacks Arranged in Electrical Parallel/Cascade with Diodesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏溪成,宋家驥
dc.subject.keyword質子交換膜燃料電池,氣體與水管理系統,控制系統,氫氣循環機制,串並聯,zh_TW
dc.subject.keywordFuel cell,Microcontroller unit,Compact design,Electrical coupling,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2013-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
8.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved