Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62382
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐澔德(J. Bruce H. Shyu)
dc.contributor.authorJhih-Hao Liaoen
dc.contributor.author廖治豪zh_TW
dc.date.accessioned2021-06-16T13:45:00Z-
dc.date.available2022-07-15
dc.date.copyright2020-07-15
dc.date.issued2020
dc.date.submitted2020-06-13
dc.identifier.citation陳奕維(2013)由河川陡峭度指標探討台灣中央山脈東翼之構造活動特性。國立臺灣大學理學院地質科學系暨研究所碩士論文,共144頁。
八島隆一(1990)東北日本弧における鮮新世火山岩のK−Ar年代:青ノ木森安山岩,阿闍羅山安山岩,七ツ森デイサイト,笹森山安山岩。地球科学,第44卷,第3號,第150-153頁。
大上和良、松坂裕之、土井宣夫、越谷 信、大口健志(1990)脊梁山地東縁部,盛岡市—花巻市西方に分布する中新統の層序について。地球科学,第44卷,第5號,第245-262頁。
小坂英輝、楮原京子、今泉俊文、三輪敦志、吉田春香、齊藤華苗、儘田 豊(2011)北上低地西縁断層帯・南昌山断層群の断層変位地形と断層露頭。活断層研究,第2011卷,第34號,第13-22頁。
小坂英輝、楮原京子、今泉俊文、三輪敦志、阿部恒平(2013)北上低地西縁断層帯・上平断層群南端付近の断層変位地形と断層露頭。地理学評論,第86卷,第6號,第493-504頁。
千屋断層研究グループ(1986)千屋断層(秋田県)の完新世の活動と断層先端部の形態 : 千畑町小森での発掘調査。東京大學地震研究所彙報,第61卷,第2號,第339-402頁。
平山次郎、広川 治、礒見 博、金原均二、菊地清四郎、大沢 穠、斎藤正次、佐藤 茂、関根良弘、鈴木達夫、吉田 尚(1959)50万分の1地質図幅 「秋田」。地質調査所。
大沢 穠、須田芳朗(1980)20万分の1地質図幅 「秋田及び男鹿」。産業技術総合研究所地質調査総合センター。
大沢 穠、広島俊男、駒澤正夫、須田芳朗(1988)20万分の1地質図幅「新庄及び酒田」。産業技術総合研究所地質調査総合センター。
及川輝樹(2012)赤城山と栗駒山の歴史時代の噴火記録。日本火山学会講演予稿集,第2012卷,第140頁。
今泉俊文、宮內崇裕、吉岡敏和、鈴木毅彥、松田時彥、鈴木康弘、早川唯弘、桜井一賀、柏木修一、東鄉正美、山口伸弥、深沢 浩、大杉芳明、熊沢秀晃(1989a)1985年千屋断層(花岡地区)トレンチ調査─日本の活断層発掘調査[31]─。活断層研究,第1989卷,第6號,第81-86頁。
今泉俊文、宮內崇裕、鈴木毅彥、山縣耕太郎、平野信一、松田時彥(1989b)1988年千屋断層(一丈木南地区)トレンチ調査─日本の活断層発掘調査[32]─。活断層研究,第1989卷,第6號,第87-92頁。
今泉俊文、平野信一、松田時彦(1989c)千屋断層のボーリング調査—断層線の湾曲を説明する断層面の形態—。活断層研究,第1989卷,第7號,第32-42頁。
中野 俊、西来邦章、宝田晋治、星住英夫、石塚吉浩、伊藤順一、川辺禎久、及川輝樹、古川竜太、下司信夫、石塚 治、山元孝広、岸本清行(2013)200 万分の1 地質編集図 no.11「日本の火山(第3版)」GIS データ。産業技術総合研究所地質調査総合センター。
中嶋 健、壇原 徹、鎮西清高(2000)岩手県湯田盆地の堆積盆発達史—新生代後期における奥羽山脈中軸部の地質構造発達史に関連して—。地質学雑誌,第106卷,第2號,第93-111頁。
田力正好、池田安隆(2005)段丘面の高度分布からみた東北日本弧中部の地殻変動と山地・盆地の形成。第四紀研究,第44卷,第4號,第229-245頁。
平野信一(1984)千屋断層系に沿う地震発生時期の推定。地理学評論,第57卷,第3號,第173-185頁。
竹内 誠、鹿野和彦、御子柴(氏家)真澄、中川 充、駒澤正夫(2005)20万分の1地質図幅「一関」。産業技術総合研究所地質調査総合センター。
吉田 尚、大沢 穠、片田正人、中井順二(1984)20万分の1地質図幅「盛岡」。産業技術総合研究所地質調査総合センター。
多田 堯(1984)沖縄トラフの拡大と九州地方の地殻変動。地震,第37卷,第3號,第407-415頁。
地震調查研究推進本部(2001)北上低地西縁断層帯の評価。共25頁。
地震調查研究推進本部(2005)横手盆地東縁断層帯の長期評価について。共24頁。
岩手県(1996)平成7年度地震調査研究交付金 雫石盆地西縁断層帯,花巻断層帯及び北上西断層帯に関する調査成果報告書。共174頁。
岩手県(1998)平成9年度地震関係基礎調査交付金 北上低地西縁断層帯に関する調査成果報告書。共60頁。
松田時彦、山崎晴雄、中田 高、今泉俊文(1980)1896年陸羽地震の地震断層。東京大學地震研究所彙報,第55卷,第3號,第795-855頁。
松田時彥、村井 勇、中村一明、中田 高、貝塚爽平、今泉俊文、宮內崇裕、柴田豊吉、平野信一、早川唯弘、米倉伸之、池田安隆、渡边滿久、 鈴木康弘、高田将志、太田陽子、三好真澄、東鄉正美、岡田篤正、澤 祥(1986)1982年千屋断層(小森地区)のトレンチ調査。活断層研究,第3卷,第65-73頁。
岡田篤正(2012)中央構造線断層帯の第四紀活動史および地震長期評価の研究。第四紀研究,第51卷,第3號,第131-150頁。
秋田県(1998)平成9年度 地震関係基礎調査交付金 横手盆地東縁断層に関する調査成果報告書。共103頁。
秋田県(1999)平成10 年度 地震関係基礎調査交付金 横手盆地東縁断層に関する調査成果報告書。共150頁。
粟田泰夫、下川浩一、山崎晴雄(1988)1983年盛岡断層群․浦田断層(浦田地区)トレンチ調查。活断層研究,第1988卷,第5號,第23-28頁。
細井 淳、天野一男(2013)岩手県西和賀町周辺奥羽脊梁山脈における前期~中期中新世の火山活動と堆積盆発達史。地質学雑誌,第119卷,第9號,第630-646頁。
渡辺満久(1989)北上低地帯の分化様式と断層運動。地理学評論,第62卷,第10號,第734-749頁。
渡辺満久(1990)活動時期の違いに基づく活断層詳細図の表現—テフロクロノロジーからみた北上低地西縁活断層群(南半部)の例—。活断層研究,第1990卷,第8號,第71-79頁。
渡辺満久(1991)北上低地帯における河成段丘面の編年および後期更新世における岩屑供給。第四紀研究,第30卷,第1號,第19-42頁。
渡辺満久、池田安隆、鈴木康弘、須貝俊彦(1994)北上低地帯西縁の古地震と断層構造—花巻西方,上平断層群のトレンチ調査—。地理学評論,第67卷,第6號,第393-403頁。
楮原京子、内田拓馬、宮内崇裕、今泉俊文、佐藤比呂志、越後智雄、池田安隆、越谷 信、野田 賢、松多信尚、石山達也、戸田 茂、加藤 一、岡田真介、加藤直子、荻野スミ子、木村治夫、渡邉勇二、宇野知樹、田中 環、小島 淳、市川史大、小畑一馬、乗田康之、今村朋裕、野田克也、井川 猛(2006a)横手盆地東縁断層帯・太田断層を横断する浅層反射法地震探査(2003年):データ取得と処理について。東京大學地震研究所彙報,第81卷,第2號,第107-117頁。
楮原京子、今泉俊文、宮内崇裕、佐藤比呂志、内田拓馬、越後智雄、石山達也、松多信尚、岡田真介、池田安隆、戸田 茂、越谷 信、野田 賢、加藤 一、野田克也、三輪敦志、黒澤英樹、小坂英輝、野原 壯(2006b)横手盆地東縁断層帯・千屋断層の形成過程と千屋丘陵の活構造。地学雑誌,第115卷,第6號,第691-714頁。
Anders, A. M., G. H. Roe, B. Hallet, D. R. Montgomery, N. J. Finnegan, J. Putkonen, S. D. Willett, N. Hovius, M. T. Brandon, and D. M. Fisher (2006), Spatial patterns of precipitation and topography in the Himalaya, Special Paper of Geological Society of America, 398, p.39-53.
Aoki, Y., and C. H. Scholz (2003), Vertical deformation of the Japanese islands, 1996-1999, Journal of Geophysical Research: Solid Earth, 108, 2257.
Baldwin, J. A., K. X. Whipple, and G. E. Tucker (2003), Implications of the shear stress river incision model for the timescale of postorogenic decay of topography, Journal of Geophysical Research: Solid Earth, 108, B3.
Bonnet, S., and A. Crave (2003), Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, P.123-126.
Chen, Y. W., J. B. H. Shyu, and C. P. Chang (2015), Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogeny inferred from fluvial channel morphology, Tectonics, 34, p.2249-2270.
Chen, C. Y., and S. D. Willett (2016), Graphical methods of river profile analysis to unravel drainage area change, uplift and erodibility contrasts in the Central Range of Taiwan, Earth Surface Processes and Landforms, 41, p.2223-2238.
D’Arcy, M., and A. C. Whittaker (2014), Geomorphic constraints on landscape sensitivity to climate in tectonically active areas, Geomorphology, 204, p.366-381.
DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophysical Research Letters, 21, p.2191-2194.
DiBiase, R. A., and K. X. Whipple (2011), The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate, Journal of Geophysical Research: Earth Surface, 116, F06036.
Duvall, A., E. Kirby, and D. Burbank (2004), Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California, Journal of Geophysical Research: Earth Surface, 109, F03002.
Fitch, T. J. (1972), Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific, Journal of Geophysical Research, 77, p.4432-4460.
Flint, J. J. (1974), Stream gradient as a function of order, magnitude, and discharge, Water Resources Research, 10, p.969-973.
Gallen, S. F., and K. W. Wegmann (2017), River profile response to normal fault growth and linkage: an example from the Hellenic forearc of south-central Crete, Greece, Earth Surface Dynamics, 5, p.161-186.
Goldrick, G., and P. Bishop (2007), Regional analysis of bedrock stream long profiles: evaluation of Hack’s SL form, and formulation and assessment of an alternative (the DS form), Earth Surface Processes and Landforms, 32, p.649-671.
Grimaud, J. L., C. Paola, and V. Voller (2016), Experimental migration of knickpoints: influence of style of base-level fall and bed lithology, Earth Surface Dynamics, 4, p.11-23.
Hack, J. T. (1957), Studies of longitudinal stream profiles in Virginia and Maryland, Geological Survey Professional Paper, 294B, p.45-97.
Hack, J. T. (1973), Stream-profile analysis and stream-gradient index, Journal of Research of the U.S. Geological Survey, 1, p.421-429.
Harel, M. A., S. M. Mudd, and M. Attal (2016), Global analysis of the stream power law parameters based on worldwide 10Be denudation rates, Geomorphology, 268, p.184-196.
Haviv, I., Y. Enzel, K. X. Whipple, E. Zilberman, A. Matmon, J. Stone, and K. L. Fifield (2010), Evolution of vertical knickpoints (waterfalls) with resistant caprock: Insights from numerical modeling, Journal of Geophysical Research, 115, F03028.
Hirata, N., T. Iwasaki, H. Aochi, and M. Matsu’ura (1999), Modeling of plate boundaries and intra-arc active fault systems in and around Japanese Islands, 1st ACES (APEC Cooperation Earthquake Simulation) Workshop Proceedings, p.171-175.
Hosoi, J., M. Okada, T. Gokan, K. Amano, and A. J. Martin (2015), Early to middle Miocene rotational tectonics of the Ou Backbone Range, northeast Japan, Island Arc, 24, p.288-300.
Howard, A. D., and G. Kerby (1983), Channel changes in badlands, Geological Society of America Bulletin, 94, p.739-752.
Howard, A. D. (1994), A detachment-limited model of drainage basin evolution, Water Resources Research, 30, p.2261-2285.
Howard, A. D., W. E. Dietrich, and M. A. Seidl (1994), Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research: Solid Earth, 99, p.13971-13986.
Ikeda, Y. (1983), Thrust-front migration and its mechanism, Bulletin of the Department of Geography University of Tokyo, 15, p.125-159.
Kagohara, K., T. Ishiyama, T. Imaizumi, T. Miyauchi, H. Sato, N. Matsuta, A. Miwa, and T. Ikawa (2009), Subsurface geometry and structural evolution of the eastern margin fault zone of the Yokote basin on seismic reflection data, northeast Japan, Tectonophysics, 470, p.319-328.
Kagohara, K., H. Kosaka, A. Miwa, T. Imaizumi, and Y. Mamada (2011), Active Tectonics along the Western Margin of Kitakami Lowland: Tectonic Geomorphology and Subsurface Structure of the Nanshozan Fault Group, Northeast Japan, Journal of Geography, 120, p.910-925.
Kato, T., G. S. El-Fiky, E. N. Oware, and S. Miyazaki (1998), Crustal strains in the Japanese Islands as deduced from dense GPS array, Geophysical Research Letters, 25, p.3445-3448.
Kirby, E., and K. Whipple (2001), Quantifying differential rock-uplift rates via stream profile analysis, Geology, 29, p.415-418.
Kirby, E., K. X. Whipple, W. Tang, and Z. Chen (2003), Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, Journal of Geophysical Research, 108, 2217.
Kirby, E., and K. X. Whipple (2012), Expression of active tectonics in erosional landscapes, Journal of Structural Geology, 44, p.54-75.
Kondo, H., K. Tanaka, Y. Mizuochi, and A. Ninomiya (2004), Long-term changes in distribution and chemistry of middle Miocene to Quaternary volcanism in the Chokai-Kurikoma area across the northeast Japan arc, The Island Arc, 13, p.18-46.
Mizumoto, T. (2006), Geomorphic Evidence of paleoearthquakes during Holocene on principal thrust fault zone in the Tohoku district, northeast Japan, The Science Reports of the Tohoku University. 7th Series, Geography, 55, p.1-69.
Nakajima, T. (2013), Late Cenozoic tectonic events and intra-arc basin development in Northeast Japan, Mechanism of Sedimentary Basin Formation-Multidisciplinary Approach on Active Plate Margins. InTech, 153-179.
Nakata, T. (1976), Quaternary Tectonic Movements in Central Tohoku District, Northeast Japan, The science reports of the Tohoku University. 7th series, Geography, 26, p.213-239.
Niitsuma, N. (2004), Japan Trench and tectonics of the Japanese Island Arcs, The Island Arc, 13, p.306-317.
Ogawa, Y., M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nishitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima (2001), Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan back arc, Geophysical Research Letters, 28, p.3741-3744.
Okada, A., and Y. Ikeda (1991), Active faults and neotectonics in Japan, The Quaternary Research, 30, p.161-174.
Omoto, K. (1976), Tohoku University radiocarbon measurements III, The science reports of the Tohoku University. 7th series, Geography, 26, p.135-157.
Otofuji, Y. I. (1996), Large tectonic movement of the Japan Arc in late Cenozoic times inferred from paleomagnetism: Review and synthesis, The Island Arc, 5, p.229-249.
Perron, J. T., and L. Royden (2012), An integral approach to bedrock river profile analysis, Earth Surface Processes and Landforms, 38, p.570-576.
Regalla, C., E. Kirby, D. Fisher, and P. Bierman (2013), Active forearc shortening in Tohoku, Japan: Constraints on fault geometry from erosion rates and fluvial longitudinal profiles, Geomorphology, 195, p.84-98.
Regalla, C., D. M. Fisher, E. Kirby, D. Oakley, and S. Taylor (2017), Slip inversion along inner fore-arc faults, eastern Tohoku, Japan, Tectonics, 36, p.2647-2668.
Sagiya, T., S. Miyazaki, and T. Tada (2000), Continuous GPS array and present-day crustal deformation of Japan, Pure and Applied Geophysics, 157, p.2303-2322.
Sato, H. (1994), The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan, Journal of Geophysical Research: Solid Earth, 99, p.22261-22274.
Sato, H., N. Hirata, and T. Iwasaki (2002a), Deep Geometry and Evolution of Active Faults in Northern Honshu, Japan, Seismotectonics in Convergent Plate Boundary, p.201-207.
Sato, H., N. Hirata, T. Iwasaki, M. Matsubara, and T. Ikawa (2002b), Deep seismic reflection profiling across the Ou Backbone range, northern Honshu Island, Japan, Tectonophysics, 355, p.41-52.
Seno, T., S. Stein, and A. E. Gripp (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, Journal of Geophysical Research: Solid Earth, 98, p.17941-17948.
Snyder, N. P., K. X. Whipple, G. E. Tucker, and D. J. Merritts (2000), Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California, Geological Society of America Bulletin, 112, p.1250-1263.
Snyder, N. P., K. X. Whipple, G. E. Tucker, and D. J. Merritts (2003), Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem, Journal of Geophysical Research: Solid Earth, 108, B2.
Tabei, T., T. Ozawa, Y. Date, K. Hirahara, and T. Nakano (1996), Crustal deformation at the Nankai Subduction Zone, southwest Japan, derived from GPS measurements, Geophysical Research Letters, 23, p.3059-3062.
Taira, A. (2001), Tectonic evolution of the Japanese Island Arc System, Annual Review of Earth and Planetary Sciences, 29, p.109-134.
Tamura, Y., Y. Tatsumi, D. Zhao, Y. Kido, and H. Shukuno (2002), Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones, Earth and Planetary Science Letters, 197, p.105-116.
The Research Group for Active Faults of Japan (1991), Active Faults in Japan: Sheet Maps and Inventories, University of Tokyo Press, 437p.
Tucker, G. E., and K. X. Whipple (2002), Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodal comparison, Journal of Geophysical Research, 107, 2179.
Whipple, K. X., and G. E. Tucker (1999), Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research: Solid Earth, 104, p.17661-17674.
Whipple, K. X., E. Kirby, and S. H. Brocklehurst (1999), Geomorphic limits to climate-induced increases in topographic relief, Nature, 401, p.39-43.
Whipple, K. X., G. S. Hancock, and R. S. Anderson (2000), River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, 112, p.490-503.
Whipple, K. X., and G. E. Tucker (2002), Implications of sediment-flux-dependent river incision models for landscape evolution, Journal of Geophysical Research, 107, 2039.
Whipple, K. X. (2004), Bedrock rivers and the geomorphology of active orogens, Annual Review of the Earth and Planetary Sciences, 32, p.151-185.
Whittaker, A. C., M. Attal, P. A. Cowie, G. E. Tucker, and G. Roberts (2008), Decoding temporal and spatial patterns of fault uplift using transient river long profiles, Geomorphology, 100, p.506-526.
Whittaker, A. C. (2012), How do landscapes record tectonics and climate?, Lithosphere, 4, p.160-164.
Willett, S. D., and M. T. Brandon (2002), On steady states in mountain belts, Geology, 30, p.175-178.
Willett, S. D., S. W. McCoy, J. T. Perron, L. Goren, and C. Y. Chen (2014), Dynamic Reorganization of River Basins, Science, 343, 1248765.
Wobus, C., K. X. Whipple, E. Kirby, N. Snyder, J. Johnson, K. Spyropolou, B. Crosby, and D. Sheehan (2006), Tectonics from topography: Procedures, promise, and pitfalls, Special Paper of Geological Society of America, 398, p.55-74.
Yamaji, A. (1990), Rapid intra-arc rifting in Miocene northeast Japan, Tectonics, 9, p.365-378.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62382-
dc.description.abstract日本在板塊交互作用之下,地震活動頻繁,境內分布許多活動斷層與山間盆地。以日本東北奧羽山脈兩側緊鄰的北上低地與橫手盆地為例,此區域具有明顯的構造地形,分別在東西兩側的山前緣,具有北上低地西緣斷層系統 (WFZKL) 與橫手盆地東緣斷層系統 (EFZYB)。由於河流能夠記錄人為因素、氣候條件、岩性差異或是構造作用所產生的地形變化,因此本研究希望運用河流地形參數的方法探討奧羽山脈兩側構造系統的活動特徵。
本研究使用的方法為河流地形參數的χ值與標準化河流陡峭度指標 (k_sn),其中χ值圖形的斜率,能夠顯示標準化河流陡峭度指標。然而在奧羽山脈的部分河流剖面中具有遷急點,為了探究遷急點是否與構造作用有關,本研究藉由衛星影像、地質圖與實地的野外調查,發現這些遷急點的成因多為水壩建物或是局部岩性差異,可能與構造作用的關連性不大。
在排除遷急點、氣候與岩性對河流地形的影響後,本研究在奧羽山脈東西兩側所得的標準化河流陡峭度指標與流域平均陡峭度指標 (MLS) 具有不同的高低趨勢,於西北側流域比西南側與東側流域高,代表西北側的侵蝕速率與抬升速率具有較快的趨勢,而造成抬升速率較快的原因,可能與構造活動有關,因此推論奧羽山脈西北側的構造活動度比西南側與東側高。這個結果似乎與1896年發生於奧羽山脈西側山前緣的陸羽地震,地表抬升集中於北側的結果可以互相呼應。然而奧羽山脈東南側流域亦具有較東北側略高的標準化河流陡峭度指標與流域平均陡峭度指標,此結果可能與燒石岳 (Yakeishi Dake) 和栗駒山 (Kurikoma Yama) 這兩座第四紀火山噴發使得地形回春有關。綜合本研究結果推論日本東北奧羽山脈能夠適用河流地形參數的方法,若於日後應用此方法於日本其他地區時,應考慮第四紀火山對河流地形參數的影響。
zh_TW
dc.description.abstractJapan is located at a complex plate boundary between the Okhotsk, Pacific, Philippine Sea, and Eurasian plates. Many volcanic arcs and intra-arc fault systems are developed with the interactions of these plates. Due to the activities of the fault systems, many mountain ranges and intermontane basins developed on the Japan islands. A good example is the Ou Backbone Range in the Tohoku region, with the Kitakami Lowland on its eastern side and the Yokote Basin on its western side. Along each flank of the range there is a major active fault system. On the eastern side is the Western Fault Zone of Kitakami Lowland (WFZKL) and on the western side is the Eastern Fault Zone of Yokote Basin (EFZYB). Previous paleoseismic and geomorphic studies suggest that the long-term slip rate of the WFZKL is about 0.2-0.4 mm/yr, and that of the EFZYB is higher, about 1 mm/yr. Since these previous studies were mostly concentrated along the fault trace, we analyzed fluvial geomorphic characteristics of the range, in the hope that such analysis would provide us information of a wider spatial coverage of the hanging-walls of the two fault systems.
We analyzed the normalized river steepness index (ksn) and the geomorphic index χ of river systems along both flanks of the Ou Backbone Range. Our results show that the eastern flank generally has rivers with lower ksn values, but rivers along the northwestern flank have distinctively higher ksn values. However, since knickpoints are present in many of the river systems, these rivers may not be under steady state conditions, and the different ksn values may not represent differences in tectonic uplift rates. To rule out this possibility, we conducted field investigations to prominent knickpoints, and found that they are mostly artificial check-dams or waterfalls produced by local lithologic difference. Therefore, we suggest that most of the river systems are under steady state conditions, and the higher ksn values may indeed indicate a higher uplift rates of the area. This would suggest that the northern segment of the EFZYB has a higher slip rate, consistent with its more prominent geomorphic expressions, and the fact that the 1896 Riku-u earthquake rupture was only limited along the northern segment of the EFZYB.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:45:00Z (GMT). No. of bitstreams: 1
ntu-109-R06224106-1.pdf: 30816792 bytes, checksum: f8008bf1b946d0de3088b41f7b1ce5a0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
圖目錄 ix
附錄圖目錄 xii
表目錄 xvi
第一章、 緒論 1
1.1 研究動機與目的 1
1.2 研究區域 5
第二章、 前人研究 15
2.1 區域地質架構 15
2.1.1 日本東北奧羽山脈及其周圍地形 15
2.1.2 日本東北奧羽山脈岩性與地層分布 22
2.1.3 日本東北奧羽山脈兩側構造系統 27
2.2 河流地形參數 36
2.2.1 標準化河流陡峭度指標(ksn)的定義 36
2.2.2 河流地形參數(χ值)的定義 41
第三章、 研究方法 43
3.1 數值地形高程模型 44
3.2 ArcGIS分析 46
3.3 Matlab分析 49
3.3.1 計算奧羽山脈的河流分布與標準化河流陡峭度指標 49
3.3.2 奧羽山脈的流域分布 54
3.4 流域平均陡峭度指標 55
3.4.1 流域平均陡峭度指標的定義 55
3.4.2 選取目標流域 57
3.4.3 計算流域平均陡峭度指標 60
第四章、 奧羽山脈河流地形分析結果 61
4.1 標準化河流陡峭度指標及其趨勢 61
4.1.1 奧羽山脈西側的河流分布情形與標準化河流陡峭度指標 61
4.1.2 奧羽山脈東側的河流與標準化河流陡峭度指標 62
4.2 奧羽山脈流域之河流遷急點 64
4.2.1 遷急點的定義與分布 64
4.2.2 奧羽山脈西側與東側的河流遷急點 68
4.2.3 奧羽山脈河流遷急點小結 72
4.3 流域平均陡峭度指標 76
4.3.1 奧羽山脈西側的流域平均陡峭度指標 77
4.3.2 奧羽山脈東側的流域平均陡峭度指標 80
第五章、 討論 81
5.1 綜合比較標準化河流陡峭度指標與流域平均陡峭度指標 81
5.2 氣候與標準化河流陡峭度指標的關係 82
5.3 岩性與標準化河流陡峭度指標的關係 88
5.4 奧羽山脈兩側的流域平均陡峭度指標與構造活動性 94
第六章、 結論 99
參考文獻 101
中文文獻 101
日文文獻 101
英文文獻 105
附錄 113
dc.language.isozh-TW
dc.subject東北地區zh_TW
dc.subject標準化河流陡峭度指標zh_TW
dc.subject新構造運動zh_TW
dc.subject奧羽山脈zh_TW
dc.subject日本zh_TW
dc.subjectNeotectonic activitiesen
dc.subjectnormalized river steepness indexen
dc.subjectOu Backbone Rangeen
dc.subjectTohoku regionen
dc.subjectJapanen
dc.title運用河流地形參數探討日本東北奧羽山脈兩側構造系統的活動度zh_TW
dc.titleNeotectonic characteristics along both flanks of the Ou Backbone Range, Tohoku Region, Japan, from fluvial geomorphic analysesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建成(Jian-Cheng Lee),齊士崢(Shyh-Jeng Chyi),詹瑜璋(Yu-Chang Chan),王昱(Yu Wang)
dc.subject.keyword新構造運動,標準化河流陡峭度指標,奧羽山脈,東北地區,日本,zh_TW
dc.subject.keywordNeotectonic activities,normalized river steepness index,Ou Backbone Range,Tohoku region,Japan,en
dc.relation.page187
dc.identifier.doi10.6342/NTU202000997
dc.rights.note有償授權
dc.date.accepted2020-06-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
30.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved