Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬(Kung-Bin Sung)
dc.contributor.authorKuang-Wei Shihen
dc.contributor.author施光偉zh_TW
dc.date.accessioned2021-06-16T13:43:27Z-
dc.date.available2018-07-18
dc.date.copyright2013-07-18
dc.date.issued2013
dc.date.submitted2013-07-10
dc.identifier.citation[1] M. Mujat, et al., Optical coherence tomography-based freeze-drying microscopy. Biomedical Optics Express, vol. 3, no. 1, 2012.
[2] Y. Kim, J.M. Higgins, R.R. Dasari, S. Suresh, and Y.K. Park, Anisotropic light scattering of individual sickle red blood cells. Journal of Biomedical Optics, vol. 17, no. 4, 2012.
[3] 行政院衛生署, 101年主要死因分析. 2013.
[4] D.C.G. De Veld, et al., The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncology, vol. 41, no. 2, pp. 117-131, 2005.
[5] J. Peters and T. Watson, Endoscopic Mucosal Resection of Barrett’s Esophagus and Early Esophageal Cancer. Journal of Gastrointestinal Surgery, vol. 15, no. 8, pp. 1299-1302, 2011.
[6] N. Subhash, J.R. Mallia, S.S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J. Biomed Opt., vol. 11, no. 1, pp. 14-18, 2006.
[7] A. Wax and K.J. Chalut, Nuclear morphology measurements with angle-resolved low coherence interferometry for application to cell biology and early cancer detection. Analytical Cellular Pathology, vol. 34, pp. 207-222, 2011.
[8] G.L. Semenza, Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, vol. 3, no. 10, pp. 721-732, 2003.
[9] G. Kar, A. Gursoy, and O. Keskin, Human Cancer Protein-Protein Interaction Network: A Structural Perspective. PLoS Comput Biol, vol. 5, no. 12, 2009.
[10] T. Breslin, et al., Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues. Annals of Surgical Oncology, vol. 11, no. 1, pp. 65-70, 2004.
[11] Y. Lin, L. He, Y. Shang, and G. Yu, Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement. Journal of Biomedical Optics, vol. 17, no. 1, 2012
[12] C. Fang, D. Brok, R.E. Brand, and Y. Liu, Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth. Biomedical Optics Express, vol. 2, no. 4, 2011.
[13] R. Mallia, et al., Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer. Journal of Biomedical Optics, vol. 13, no. 4, 2008.
[14] C.F. Poh, et al., The Application of Tissue Autofluorescence in Detection and Management of Oral Cancer and Premalignant Lesions. Optical Imaging of Cancer, pp. 101-118, 2010.
[15] D.C.G. de Veld, et al., Autofluorescence and Diffuse Reflectance Spectroscopy for Oral Oncology. Lasers in Surgery and Medicine, vol. 36, no. 5, 2005.
[16] Q. Wang, H.Yang, A. Agrawal, N.S. Wang, and T.J. Pfefer, Measurement of internal tissue opticalproperties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system. Optics Express, vol. 16, no. 12, 2008.
[17] N. Rajaram, T.J. Aramil, K. Lee, J.S. Reichenberg, T.H. Nguyen, and J.W. Tunnell, Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Applied Optics, vol. 49, no. 2, 2010.
[18] J.S. Dam, C.B. Pedersen, T. Dalgaard, P.E. Fabriclus, P. Aruna, and S. Andersson-Engels, Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths. Applied Optics, vol. 40, no. 7, 2001.
[19] C.C. Yu, et al., Quantitative spectroscopic imaging for noninvasive early cancer detection. Optics Express, vol. 16, no. 20, 2008.
[20] Q. Wang, D. Le, J. Ramella-Roman, and T.J. Prefer, Broadband ultraviolet-visible optical property measurement in layered turbid media. Biomedical Optics Express, vol. 3, no. 6, 2012.
[21] C. Kortun, Y.R. Hijazi, and D. Arifler, Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer. Journal of Biomedical Optics, vol. 13, no. 3, 2008.
[22] A. Welch and M. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue. Springer Science+Business Media B.V., 2011.
[23] T.J. Farrell, M.S. Patterson, and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical physics, vol. 19, no. 4, pp. 879-888, 1992.
[24] L.V. Wang, H.I. Wu, and B.R. Masters, Biomedical Optics, Principles and Imaging. Journal of Biomedical Optics, vol. 13, no. 4, 2008.
[25] N. Metropolis, and S. Ulam, The Monte Carlo Method. Journal of the American Statistical Association, vol. 44, no. 247, pp. 335-341, 1949.
[26] S.A. Prahl, M. Keijzer, S.L. Jacques, and A. J. Welch, A Monte Carlo Model of Light Propagation in Tissue. Dosimetry of Laser Radiation in Medicine and Biology, vol. 5, pp. 102-111, 1989.
[27] 陳錫勳, 利用斜角光纖定量雙層組織的光學參數. 臺灣大學生醫電子與資訊學研究所碩士學位論文2012, 臺灣大學.
[28] Y. Garini, I.T. Young, and G. McNamara, Spectral Imaging: Principles and Applications. Cytometry Part A, vol. 69, no.8, pp. 735-747, 2006.
[29] 賴柏禎, 利用傅立葉轉換光譜影像技術快速量測金屬奈米粒子散射光譜. 臺灣大學電機工程學系碩士學位論文2008, 臺灣大學.
[30] M. Martin, et al., Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection. Annals of Biomedical Engineering, vol. 34, no. 6, pp. 1061-1068, 2006.
[31] 曾德玉, 多光譜影像系統於生物醫學之應用. 臺灣大學生醫電子與資訊學研究所博士學位論文2011, 臺灣大學.
[32] 畢襄辰, 移動式高光譜顯微影像系統之建構與實測. 臺灣大學生醫電子與資訊學研究所碩士學位論文2012, 臺灣大學.
[33] K.B. Sung and H.H. Chen, Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study. Journal of Biomedical Optics, vol. 17, no. 10, 2012.
[34] B.W. Pogue and M.S. Patterson, Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Journal of Biomedical Optics, vol. 11, no. 4, 2006.
[35] 李儀珊, 利用傅立葉轉換式高光譜顯微影像系統進行口腔黏膜光學參數量測.臺灣大學生醫電子與資訊學研究所碩士學位論文2011, 臺灣大學.
[36] K. Vishwanath, et al., Portable fiber-based DRS systems for estimating tissue optical properties. Applied Spectroscopy, vol. 65, no. 2, 2011.
[37] X. Ma, J.Q. Lu, R.S. Brock, K.M. Jacobs, P. Yang, and X.H. Hu, Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Institute of Physics Publishing, vol. 48, pp. 4165-4172, 2003.
[38] G. Mie, Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen. Ann. Physik, vol. 330, pp. 377-445, 1908.
[39] D. Passos, J.C. Hebden, P.N. Pinto, and R. Guerra, Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution. Journal of Biomedical Optics, vol. 10, no. 6, 2005.
[40] R. Michels, F. Foschum, and A. Kienle, Optical properties of fat emulsions. Optics Express, vol. 16, no. 8, 2008.
[41] I. Pavlova, et al., Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer. Journal of Biomedical Optics, vol. 13, no. 6, pp. 064012-064013, 2008.
[42] P. Liu, Z. Zhu, C. Zeng, and G. Nie. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues. Journal of Biomedical Optics, vol. 17, no. 12, 2012.
[43] Hecht, Optics. Addison-Wesley, 1987
[44] K. Pearson, On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, vol. 2, no. 6, pp. 559-572, 1901.
[45] N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Optics Express, vol. 18, no. 7, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62359-
dc.description.abstract本研究主旨為建構一結合高光譜儀與影像光纖束之移動式漫反射光譜系統,於臨床情況下量取口腔黏膜的空間漫反射光譜資訊,再透過漫反射光譜擬合工具進行組織光學參數之萃取,以期可提供早期癌症診斷之輔助判斷資訊。
本系統安裝了用於漫反射訊號量測之寬頻可見光源,並於量測上使用兩種不同形式之光纖束,分別為斜角及平口光纖束,可應用於淺層及較深層組織之訊號量測,斜角光纖束使用為沿影像光纖束中心軸由光源光纖向外圈選圓形區域(Region of interest, ROI)之分析模式,平口光纖束則以光源光纖為中心,向外圈選同心圓環進行分析。
本系統以驗證後之蒙地卡羅順向模擬光譜進行組織漫反射光譜校正,於影像光纖束上選取至光源不同距離 (source to detection separation, SDS) 之偵測範圍分析,並以四種不同濃度尺寸之液態散射源(polystyrene)及擬組織雙層仿體(phantom)進行空間漫反射光譜的量測校正比對,於SDS = 300、400、600、800 μ'm' 之偵測範圍,液態散射源的方均根誤差值可達到6%以內、擬組織雙層仿體亦有8%以內的水準,由此可知本系統之漫反射光譜量測已達到相當程度的準確率。
本系統已通過衛生署及本校醫學院附設醫院醫工部核可,於本校醫學院附設醫院針對正常與病變人體口腔黏膜組織進行臨床量測,除使用反向模型擬合工具萃取出口腔黏膜於450 nm至700 nm波段之光學參數定量分析外,亦直接統計光譜形狀特徵做定性分析。預計本系統未來可建立光學參數與光譜特徵資料庫,作為判斷癌前病變進程的依據之一。
本移動式系統之目標為一穩定可靠的臨床量測系統,並能提供癌前病變診斷的輔助資訊。
zh_TW
dc.description.abstractThe main idea of this research is to construct a portable diffuse reflectance spectral system by combining a hyper-spectral imaging system and a fiber bundle. In order to provide information on early cancer diagnosis, we gather the spatially-resolved diffuse reflectance spectrum of oral mucosa in clinical settings and use the fitting tool to quantify the optical parameters of it.
For diffuse reflectance spectrum measurement, we use the broad band visible light source and two kinds of imaging fiber bundle in our system. One is the perpendicular distal end and one is the 45 degree oblique distal end of the imaging fiber bundle respectively for the shallow and deep tissue. According to the different sources of detection separation (SDS), we select the concentric ring region of interest (ROI) on perpendicular imaging fiber bundle and circle region of interest on oblique imaging fiber bundle along the long and short axes, respectively.
The system, calibrated by the verified Monte Carlo simulation spectrum, measures the polystyrene liquid scattering phantom in four different diameters and concentrations and measures the tissue-mimic two layered phantom. In the SDS of 300, 400, 600, and 800 micrometers, the root mean square error is less than 6% in liquid scattering phantom and 8% in two layered phantom, showing our system has good accuracy.
Approved by Taiwan Food and Drug Administration (TFDA), Department of Health and National Taiwan University Hospital Medical Industry, we have clinical measurement in Department of Dentistry National Taiwan University Hospital for oral mucosa. In addition to using a fitting tool quantifying the optical parameters in 450-700 nanometers, we also collect statistics directly for spectrum principle component analysis (PCA). The system is expected to build future optical parameters and spectral characteristics of the database as a judgment basis for the process of the precancerous lesions.
The portable system’s objective is to be a stable and reliable clinical measurement system and to provide supplementary information of the precancerous lesions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:43:27Z (GMT). No. of bitstreams: 1
ntu-102-R00945026-1.pdf: 6003193 bytes, checksum: acdd075628c49019328ea64c9ea6c835 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章:緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文架構 3
第二章:理論介紹 4
2.1 口腔癌前病變與光學診斷技術 4
2.2 漫反射原理 6
2.3 蒙地卡羅演算法 9
2.4 高光譜儀 12
第三章:實驗儀器與研究方法 15
3.1 實驗架構 15
3.2移動式漫反射光譜系統建構設計及方法 15
3.2.1 高光譜顯微影像系統 16
3.2.2 光纖探頭設計 18
3.2.3 臨床量測環境 20
3.3 順向光譜擬合工具 22
3.4 反向光譜擬合工具 24
3.5 仿體量測驗證 27
3.5.1 液態散射仿體實驗 27
3.5.2 雙層擬組織仿體實驗 29
3.6 人體口腔黏膜漫反射光譜臨床量測 31
第四章:實驗結果與討論 33
4.1 光學系統參數 33
4.1.1 空間解析度及光譜解析度 33
4.1.2 光源光束尺寸及照射至組織光強度 35
4.1.3 鏡面反射的減低 38
4.2 仿體量測結果 39
4.2.1 液態散射仿體量測之可重複性 39
4.2.2 液態散射仿體量測結果 42
4.2.3 擬組織雙層仿體量測結果 44
4.3 人體口腔黏膜漫反射光譜量測結果與參數萃取 47
第五章:結論與未來展望 56
附錄 58
參考文獻 63
dc.language.isozh-TW
dc.subject高光譜顯微影像系統zh_TW
dc.subject口腔黏膜組織zh_TW
dc.subject空間漫反射光譜資訊zh_TW
dc.subject漫反射光譜zh_TW
dc.subject影像光纖束zh_TW
dc.subject光學組織參數zh_TW
dc.subject光譜特徵分析zh_TW
dc.subjectspectrum principle component analysisen
dc.subjectOral mucosaen
dc.subjectspatially-resolved reflectance spectrumen
dc.subjectdiffuse reflectance spectrumen
dc.subjecthyper-spectral imaging systemen
dc.subjectimaging fiber bundleen
dc.subjectoptical parametersen
dc.title移動式漫反射光譜系統建立與人體口腔黏膜參數萃取zh_TW
dc.titleConstruction of a Portable Diffuse Reflectance Spectral System and Quantifying the Optical Parameters of Oral Mucosaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江俊斌(Chun-Pin Chiang),曾盛豪(Sheng-Hao Tseng),孫家偉(Chia-Wei Sun)
dc.subject.keyword口腔黏膜組織,空間漫反射光譜資訊,漫反射光譜,高光譜顯微影像系統,影像光纖束,光學組織參數,光譜特徵分析,zh_TW
dc.subject.keywordOral mucosa,spatially-resolved reflectance spectrum,diffuse reflectance spectrum,hyper-spectral imaging system,imaging fiber bundle,optical parameters,spectrum principle component analysis,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2013-07-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved