請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62341
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉 | |
dc.contributor.author | Chang-Chieh Huang | en |
dc.contributor.author | 黃君傑 | zh_TW |
dc.date.accessioned | 2021-06-16T13:42:16Z | - |
dc.date.available | 2014-07-19 | |
dc.date.copyright | 2013-07-19 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-11 | |
dc.identifier.citation | 連興隆,1994。四氯化碳在水中非生物性還原脫氯反應之研究。碩士論文,國立臺灣大學環境工程學研究所。
林進榮,2005。負載奈米銅顆粒之陽離子交換樹脂還原破壞水中四氯化碳之研究。博士論文,國立臺灣大學環境工程學研究所。 環保署,環署土字第0990037397號 (公告高雄縣臺灣塑膠工業股份有限公司仁武廠為土壤、地下水污染整治場址。) 洪旭文、林財富,2002。透水性反應牆之設計介紹。工業污染防治 84,第 114-135頁。 楊金鐘、洪志雄、張德光,2005。奈米級鈀/鐵雙金屬:製備、基本性質及催化活性。第二屆環境保護與奈米科學技術研討會,新竹。 王嶽斌、葉俊宏,2000。美國飲用水消費者信賴報告法則之簡介。環境教育季刊 43,第 58-63頁。 Ahuja, D.K., Gavalas, V.G., Bachas, L.G., Bhattacharyya, D., 2004. Aqueous-phase dechlorination of toxic chloroethylenes by vitamin B-12 cobalt center: Conventional and polypyrrole film-based electrochemical studies. Ind Eng Chem Res 43, 1049-1055. Amir, A., Lee, W., 2011. Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin B12. Chem Eng J 170, 492-497. Assafanid, N., Hayes, K.F., Vogel, T.M., 1994. Reductive Dechlorination of Carbon-Tetrachloride by Cobalamin(II) in the Presence of Dithiothreitol - Mechanistic Study, Effect of Redox Potential and pH. Environ Sci Technol 28, 246-252. ATSDR, 2000. Toxicological Profile for Methylene Chloride. Blaser, H.U., Halpern, J., 1980. Reactions of Vitamin-B12r with Organic Halides. J Am Chem Soc 102, 1684-1689. Boronina, T., Klabunde, K.J., Sergeev, G., 1995. Destruction of Organohalides in Water Using Metal Particles: Carbon Tetrachloride/Water Reactions with Magnesium, Tin, and Zinc. Environ Sci Technol 29, 1511-1517. Chen, K.F., Li, S.L., Zhang, W.X., 2011. Renewable hydrogen generation by bimetallic zero valent iron nanoparticles. Chem Eng J 170, 562-567. Chen, K.F., Yeh, T.Y., Kao, C.M., Sung, W.P., Lin, C.C., 2012. Application of Nanoscale Zero-valent Iron (nZVI) to Enhance Microbial Reductive Dechlorination of TCE: A Feasibility Study. Curr Nanosci 8, 55-59. Chen, L.H., Huang, C.C., Lien, H.L., 2008. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 73, 692-697. Chiu, P.C., Reinhard, M., 1996. Transformation of Carbon Tetrachloride by Reduced Vitamin B12 in Aqueous Cysteine Solution. Environ Sci Technol 30, 1882-1889. Chiu, P.C., Reinhard, M., 1995. Metallocoenzyme-Mediated Reductive Transformation of Carbon-Tetrachloride in Titanium(Iii) Citrate Aqueous-Solution. Environ Sci Technol 29, 595-603. Cundy, A.B., Hopkinson, L., Whitby, R.L.D., 2008. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci Total Environ 400, 42-51. Doong, R.A., Chiang, H.C., 2005. Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds. Environ Sci Technol 39, 7460-7468. Doong, R.A., Maithreepala, R.A., 2005. Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II). Environ Sci Technol 39, 4082-4090. Dror, I., Baram, D., Berkowitz, B., 2005. Use of nanosized catalysts for transformation of chloro-organic pollutants. Environ Sci Technol 39, 1283-1290. Dror, I., Schlautman, M.A., 2004. Cosolvent effect on the catalytic reductive dechlorination of PCE. Chemosphere 57, 1505-1514. Elliott, D.W., Zhang, W.X., 2001. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ Sci Technol 35, 4922-4926. Feng, J., Lim, T.T., 2007. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: Analysis of linear free energy relationship. Chemosphere 66, 1765-1774. Feng, J., Lim, T.T., 2005. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 59, 1267-1277. Fennelly, J.P., Roberts, A.L., 1998. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ Sci Technol 32, 1980-1988. Gantzer, C.J., Wackett, L.P., 1991. Reductive Dechlorination Catalyzed by Bacterial Transition-Metal Coenzymes. Environ Sci Technol 25, 715-722. Gillham, R.W., O'Hannesin, S.F., 1994. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron. Ground Water 32, 958-967. Glod, G., Brodmann, U., Angst, W., Holliger, C., Schwarzenbach, R.P., 1997. Cobalamin-mediated reduction of cis- and trans-dichloroethene, 1,1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: Reaction kinetics and mechanistic considerations. Environ Sci Technol 31, 3154-3160. Grittini, C., Malcomson, M., Fernando, Q., Korte, N., 1995. Rapid Dechlorination of Polychlorinated-Biphenyls on the Surface of a Pd/Fe Bimetallic System. Environ Sci Technol 29, 2898-2900. He, J.H., Ichinose, I., Kunitake, T., Nakao, A., Shiraishi, Y., Toshima, N., 2003. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: Nanoparticle morphology and catalytic activity. J Am Chem Soc 125, 11034-11040. Hu, C.Y., Lo, S.L., Liou, Y.H., Hsu, Y.W., Shih, K.M., Lin, C.J., 2010. Hexavalent chromium removal from near natural water by copper-iron bimetallic particles. Water Res 44, 3101-3108. Huang, C.C., Lien, H.L., 2010. Trimetallic Pd/Fe/Al particles for catalytic dechlorination of chlorinated organic contaminants. Water Sci Technol 62, 202-208. Jiao, Y., Qiu, C., Huang, L., Wu, K., Ma, H., Chen, S., Ma, L., Wu, D., 2009. Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. Appl Catal B: Environ 91, 434-440. ITRC, 2011. Permeable Reactive Barriers: Technology Update. Johnson, T.L., Scherer, M.M., Tratnyek, P.G., 1996. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30, 2634-2640. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S., 2012. A review on nanomaterials for environmental remediation. Energ Environ Sci 5, 8075-8109. Kim, Y.H., Carraway, E.R., 2000. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34, 2014-2017. Kim, Y.H., Carraway, E.R., 2002. Reductive Dechlorination of PCE and TCE by Vitamin B12 and ZVMs. Environ Technol 23, 1135 - 1145. Krone, U.E., Laufer, K., Thauer, R.K., Hogenkamp, H.P.C., 1989a. Coenzyme-F430 as a Possible Catalyst for the Reductive Dehalogenation of Chlorinated-C1 Hydrocarbons in Methanogenic Bacteria. Biochemistry-Us 28, 10061-10065. Krone, U.E., Thauer, R.K., Hogenkamp, H.P.C., 1989b. Reductive Dehalogenation of Chlorinated C1-Hydrocarbons Mediated by Corrinoids. Biochemistry-Us 28, 4908-4914. Lexa, D., Saveant, J.M., 1983. The Electrochemistry of Vitamin-B12. Accounts Chem Res 16, 235-243. Lien, H.L., Jhuo, Y.S., Chen, L.H., 2007. Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environ Eng Sci 24, 21-30. Lien, H.L., Zhang, W.X., 1999. Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng-Asce 125, 1042-1047. Lien, H.L., Zhang, W.X., 2002. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere 49, 371-378. Lien, H.L., Zhang, W.X., 2005. Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng-Asce 131, 4-10. Lien, H.L., Zhang, W.X., 2007. Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Appl Catal B-Environ 77, 110-116. Lin, C.J., Lo, S.L., Liou, Y.H., 2005. Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere 59, 1299-1307. Liou, Y.H., Lo, S.L., Lin, C.J., 2007. Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water Res 41, 1705-1712. Liou, Y.H., Lo, S.L., Lin, C.J., Hu, C.Y., Kuan, W.H., Weng, S.C., 2005. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: Effects of H-2-reducing pretreatment and copper deposition. Environ Sci Technol 39, 9643-9648. Liu, Z., Betterton, E.A., Arnold, R.G., 2000. Electrolytic Reduction of Low Molecular Weight Chlorinated Aliphatic Compounds: Structural and Thermodynamic Effects on Process Kinetics. Environ Sci Technol 34, 804-811. Ludwig, R.D., 2013. Reactive Materials and Contaminant Treatment. Workshop on Permeable Reactive Barriers (PRBs) for Contaminated Sites, Kaohsiung City, Taiwan. Martens, J.H., Barg, H., Warren, M.J., Jahn, D., 2002. Microbial production of vitamin B12. Appl Microbiol Biot 58, 275-285. Matheson, L.J., Tratnyek, P.G., 1994. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ Sci Technol 28, 2045-2053. McCauley, K.M., Pratt, D.A., Wilson, S.R., Shey, J., Burkey, T.J., van der Donk, W.A., 2005. Properties and Reactivity of Chlorovinylcobalamin and Vinylcobalamin and Their Implications for Vitamin B12-Catalyzed Reductive Dechlorination of Chlorinated Alkenes. J Am Chem Soc 127, 1126-1136. Mueller, N.C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., Nowack, B., 2012. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut R 19, 550-558. Muftikian, R., Fernando, Q., Korte, N., 1995. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Res 29, 2434-2439. Muir, S.S., Yao, X., 2011. Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. Int J Hydrogen Energ 36, 5983-5997. Nutt, M.O., Hughes, J.B., Wong, M.S., 2005. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39, 1346-1353. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C., 2013. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51, 104-122. Orth, W.S., Gillham, R.W., 1996. Dechlorination of Trichloroethene in Aqueous Solution Using Fe0. Environ Sci Technol 30, 66-71. Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., Campbell, T.J., 1996. Reductive elimination of chlorinated ethylenes by zero valent metals. Environ Sci Technol 30, 2654-2659. Schrauze, G.N., Deutsch, E., 1969. Reactions of Cobalt(I) Supernucleophiles . Alkylation of Vitamin B12s Cobaloximes(I) and Related Compounds. J Am Chem Soc 91, 3341-3350. Song, H., Carraway, E.R., 2005. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39, 6237-6245. Song, H., Carraway, E.R., 2006. Reduction of chlorinated methanes by nano-sized zero-valent iron. Kinetics, pathways, and effect of reaction conditions. Environ Eng Sci 23, 272-284. Sorel, D., Lesage, S., Brown, S., Millar, K., 2001. Vitamin B12 and Reduced Titanium for Remediation of Residual Chlorinated Solvents: Field Experiment. Ground Water Monit R 21, 140-148. Su, Y.F., Hsu, C.Y., Shih, Y.H., 2012. Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. Chemosphere 88, 1346-1352. Sviridov, V.V., Shevchenko, G.P., Susha, A.S., Diab, N.A., 1996. Use of Ti(III) Complexes To Reduce Ni, Co, and Fe in Water Solutions. J Phys Chem 100, 19632-19635. Tratnyek, P.G., Scherer, M.M., Deng, B., Hu, S., 2001. Effects of Natural Organic Matter, Anthropogenic Surfactants, and Model Quinones on the Reduction of Contaminants by Zero-Valent Iron. Water Res 35, 4435-4443. Van der Zee, F.P., Cervantes, F.J., 2009. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review. Biotechnol Adv 27, 256-277. Wan, C.H., Chen, Y.H., Wei, R., 1999. Dechlorination of chloromethanes on iron and palladium-iron bimetallic surface in aqueous systems. Environ Toxicol Chem 18, 1091-1096. Wang, C.B., Zhang, W.X., 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31, 2154-2156. Wang, X.Y., Chen, C., Chang, Y., Liu, H.L., 2009. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J Hazard Mater 161, 815-823. Wei, Y.T., Wu, S.C., Chou, C.M., Che, C.H., Tsai, S.M., Lien, H.L., 2010. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Res 44, 131-140. Wei, Y.T., Wu, S.C., Yang, S.W., Che, C.H., Lien, H.L., Huang, D.H., 2012. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211, 373-380. Wood, J.M., Kennedy, F.S., Wolfe, R.S., 1968. Reaction of Multihalogenated Hydrocarbons with Free and Bound Reduced Vitamin B12. Biochemistry-Us 7, 1707-1713. Yan, W., Herzing, A.A., Li, X.Q., Kiely, C.J., Zhang, W.X., 2010. Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environ Sci Technol 44, 4288-4294. Yan, W.L., Lien, H.L., Koel, B.E., Zhang, W.X., 2013. Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci-Proc Imp 15, 63-77. Yang, M.X., Sarkar, S., Bent, B.E., Bare, S.R., Holbrook, M.T., 1997. Degradation of multiply-chlorinated hydrocarbons on Cu(100). Langmuir 13, 229-242. Zhang, W.X., 2003. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5, 323-332. Zhang, W.X., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40, 387-395. Zhu, N.R., Luan, H.W., Yuan, S.H., Chen, J., Wu, X.H., Wang, L.L., 2010. Effective dechlorination of HCB by nanoscale Cu/Fe particles. J Hazard Mater 176, 1101-1105. Zou, S., Stensel, H.D., Ferguson, J.F., 2000. Carbon Tetrachloride Degradation: Effect of Microbial Growth Substrate and Vitamin B12 Content. Environ Sci Technol 34, 1751-1757. EnviroMetal Technologies Inc http://www.eti.ca/animation.html OceanWorld - Texas A&M University http://oceanworld.tamu.edu/resources/environment-book/groundwaterremediation.html http://oceanworld.tamu.edu/resources/environment-book/Images/DNAPL.gif US NanoMetro Map - Project on Emerging Nanotechnology, PEN http://www.nanotechproject.org/inventories/map/ Nanoremediation Map - Project on Emerging Nanotechnology, PEN http://www.nanotechproject.org/inventories/remediation_map/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62341 | - |
dc.description.abstract | 二氯甲烷是地下水中一種頑強的含氯有機汙染物,難以藉由零價鐵金屬還原降解。本研究發現在還原條件下,藉由零價銅金屬奈米顆粒與維生素 B12作為催化劑能有效催化二氯甲烷還原降解。批次實驗指出當存在銅金屬於硼氫化納還原條件時,二氯甲烷會被迅速降解。而當單獨使用銅金屬但無外加還原劑、或者單獨硼氫化鈉還原條件而無添加銅金屬催化劑時則無法降解二氯甲烷。而銅金屬對於維生素 B12(一種電子媒介體,可催化含氯有機物的還原降解)在檸檬酸鈦還原條件下去除二氯甲烷也有明顯的加強效果,當添加零價銅進入維生素 B12系統後,二氯甲烷的降解速率會比添加銅金屬之前增加五倍,效果十分顯著。二氯甲烷的降解速率會隨著銅金屬劑量或維生素 B12劑量的增加而增加。產物分析證明二氯甲烷的消失是經由還原降解。系統中產生的銅離子濃度低於飲用水標準,這顯示銅金屬奈米顆粒的使用不會造成二次汙染、是很有潛力的汙染物去除材料。可預期此結合零價銅金屬奈米顆粒與維生素 B12(或其他電子媒介體)之系統很有潛力作為地下水汙染整治之用,特別是對於零價鐵無法整治的頑強含氯有機汙染物。 | zh_TW |
dc.description.abstract | Dichloromethane (DCM) is a recalcitrant groundwater contaminant that shows nearly no reactivity with zero-valent iron (ZVI) nanoparticles. In this study, an effective dechlorination of DCM has been demonstrated using zero-valent copper (Cu0) nanoparticles and vitamin B12 as catalysts under reduction conditions. Batch experiments revealed that DCM was rapidly degraded in the presence of Cu0 nanoparticles under reduction conditions of sodium borohydride. No degradation of DCM was observed in the presence of Cu0 nanoparticles alone, nor under sodium borohydride reduction conditions alone. A synergistic effect of Cu0 nanoparticles on the reductive degradation of DCM by vitamin B12 (an electron mediator) under reduction conditions of titanium citrate was found. The reaction rate of DCM degradation by the Cu0–B12 system was five times greater than that of using vitamin B12 alone. The DCM degradation rate is a function of the Cu0 nanoparticle and vitamin B12 dose. Increasing the dose increased the observed reaction rate. Product analysis indicated that the degradation of DCM involved hydrodechlorination. Soluble copper ions generated by the dissolution of Cu0 nanoparticles were lower than the World Health Organization drinking water standard, which suggests that the use of Cu0 nanoparticles under reduction conditions may be potentially useful. It is expected that the combination of Cu0 nanoparticles and vitamin B12 (or other electron mediator) system may have the potential for treating recalcitrant chlorinated contaminants that cannot be degraded by ZVI technology. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:42:16Z (GMT). No. of bitstreams: 1 ntu-102-D97541002-1.pdf: 5887253 bytes, checksum: 9a1419cae2fc457777e48ac9910ad2fe (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 地下水汙染與含氯有機汙染物 3 2.1.1 地下水汙染 3 2.1.2 含氯有機物 4 2.1.3 二氯甲烷的特性與來源 10 2.1.4 二氯甲烷之危害與管制 10 2.2 使用透水性反應牆進行受到含氯有機物汙染地下水之整治復育技術 13 2.3 零價鐵金屬與其他零價金屬 16 2.3.1 零價鐵金屬 16 2.3.2 複合金屬 18 2.3.3 奈米金屬(零價金屬奈米顆粒) 24 2.3.4 目前零價鐵金屬技術之缺點與有待改良之處 27 2.3.5 銅金屬的使用 33 2.4 電子媒介體 35 2.4.1 維生素 B12簡介 37 2.4.2 維生素 B12之特性與其反應原理 38 2.4.3 影響維生素 B12催化脫氯反應之因素 41 第三章 研究方法 43 3.1 研究流程 43 3.2 實驗藥品 44 3.3 污染物儲備溶液與維生素 B12儲備溶液配製 44 3.4 污染物與生成物濃度分析 46 3.5 零價金屬與複合金屬的製備 48 3.6 金屬材料特性分析 49 3.7 批次實驗 50 第四章 結果與討論 51 4.1 銅金屬材料特性分析 51 4.2 零價銅金屬於還原條件下降解二氯甲烷 55 4.2.1 零價銅金屬與硼氫化鈉去除二氯甲烷 55 4.2.2 零價銅金屬劑量對二氯甲烷降解之影響 57 4.2.3 硼氫化鈉還原劑劑量對二氯甲烷降解之影響 62 4.2.4 零價銅金屬反應前後之觀察 63 4.2.5 零價銅金屬於硼氫化鈉還原條件下去除二氯甲烷之機制探討 65 4.2.6 系統中銅離子濃度分析 67 4.3 零價銅金屬與維生素 B12催化降解二氯甲烷 68 4.3.1 零價銅金屬與維生素 B12降解二氯甲烷 68 4.3.2 零價銅金屬劑量對零價銅金屬-維生素 B12系統降解二氯甲烷之影響 71 4.3.3 維生素 B12劑量對零價銅金屬-維生素 B12系統降解二氯甲烷之影響 74 4.3.4 零價銅金屬與維生素 B12最佳使用量探討 78 4.3.5 系統 pH對於零價銅金屬與維生素 B12催化降解二氯甲烷 82 4.3.6 UV分析與維生素 B12反應機制探討 84 4.3.7 零價銅金屬反應前後之觀察 93 4.3.8 銅金屬-維生素 B12系統去除二氯甲烷之機制 96 4.4 成本效益評估 98 4.5銅金屬-維生素 B12系統應用於零價鐵金屬 100 4.5.1 配製銅鐵複合金屬配合維生素 B12降解二氯甲烷 100 4.5.2 簡易配製零價鐵與零價銅金屬方法與其材料特性分析 101 4.5.3 零價鐵-銅金屬-B12系統與其去除含氯有機汙染物的能力 105 第五章 結論與建議 108 5.1 結論 108 5.2 建議 110 參考文獻 111 附錄 120 | |
dc.language.iso | zh-TW | |
dc.title | 以零價銅金屬及維生素 B12催化二氯甲烷還原降解之研究 | zh_TW |
dc.title | Catalytic Degradation of Dichloromethane by Zero-valent Copper and Vitamin B12 under Reduction Conditions | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 連興隆,張慶源,林郁真,曾迪華 | |
dc.subject.keyword | 催化脫氯,含氯有機汙染物,鈷胺素,地下水整治復育,奈米顆粒,零價鐵, | zh_TW |
dc.subject.keyword | Catalytic dechlorination,chlorinated organic contaminants,cobalamin,groundwater remediation,nanoparticles,zero-valent iron (ZVI), | en |
dc.relation.page | 123 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。