請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62340
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高全良 | |
dc.contributor.author | Huan-Chun Lin | en |
dc.contributor.author | 林煥鈞 | zh_TW |
dc.date.accessioned | 2021-06-16T13:42:12Z | - |
dc.date.available | 2018-09-24 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-11 | |
dc.identifier.citation | 1. Fields, B. N., et al. (2007). Fields virology. Philadelphia, Wolters Kluwer Health/Lippincott Williams & Wilkins.
2. International Committee on Taxonomy of Viruses. http://ictvonline.org/index.asp. 3. Flint, S. J. and American Society for Microbiology. (2009). Principles of virology. Washington, DC, ASM Press. 4. VIRKON Background Information. https://extranet.fisher.co.uk/webfiles/uk/web-docs/SLSGD05.PDF 5. Hawkins, C. L. and M. J. Davies (1999). Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation. Biochem J 340 ( Pt 2): 539-548. 6. Hawkins, C. L., et al. (2003). Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25(3-4): 259-274. 7. Banik, S., et al. (2003). Bioeffects of microwave--a brief review. Bioresour Technol 87(2): 155-159. 8. Thomas, E. L. (1979). Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect Immun 23(2): 522-531. 9. Weiss, S. J. and A. F. Lobuglio (1982). Phagocyte-Generated Oxygen Metabolites and Cellular Injury. Laboratory Investigation 47(1): 5-18. 10. Kettle, A. J. and C. C. Winterbourn (1997). Myeloperoxidase: A key regulator of neutrophil oxidant production. Redox Report 3(1): 3-15. 11. Hawkins, C. L. and M. J. Davies (2002). Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Chem Res Toxicol 15(1): 83-92. 12. Pattison, D. I. and M. J. Davies (2001). Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14(10): 1453-1464. 13. Panasenko, O. M. (1997). The mechanism of the hypochlorite-induced lipid peroxidation. Biofactors 6(2): 181-190. 14. Carr, A. C., et al. (1996). Chlorination of cholesterol in cell membranes by hypochlorous acid. Archives of Biochemistry and Biophysics 332(1): 63-69. 15. Hayatsu, H., et al. (1971). Reaction of sodium hypochlorite with nucleic acids and their constituents. Chem Pharm Bull (Tokyo) 19(10): 2189-2192. 16. Patton, W., et al. (1972). Chlorination studies. I. The reaction of aqueous hypochlorous acid with cytosine. Biochem Biophys Res Commun 48(4): 880-884. 17. Hawkins, C. L. and M. J. Davies (2001). Hypochlorite-induced damage to nucleosides: formation of chloramines and nitrogen-centered radicals. Chem Res Toxicol 14(8): 1071-1081. 18. Yu, M. S., et al. (2011). The effect of a low concentration of hypochlorous acid on rhinovirus infection of nasal epithelial cells. Am J Rhinol Allergy 25(1): 40-44. 19. Krilov, L. R. and S. H. Harkness (1993). Inactivation of respiratory syncytial virus by detergents and disinfectants. Pediatr Infect Dis J 12(7): 582-584. 20. Sanekata, T., et al. (2010). Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol Sci 15(2): 45-49. 21. Vossmann, M., et al. (2008). West Nile virus is neutralized by HOCl-modified human serum albumin that binds to domain III of the viral envelope protein E. Virology 373(2): 322-328. 22. Dellanno, C., et al. (2009). The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am J Infect Control 37(8): 649-652. 23. 水神抗菌液官方網站. http://www.watergod.com.tw/. 24. Envirolyte. http://envirolyte.com/index.html. 25. Culkin, K. A. and D. Y. C. Fung (1975). Destruction of Escherichia-Coli and Salmonella-Typhimurium in Microwave-Cooked Soups. Journal of Milk and Food Technology 38(1): 8-15. 26. Rai, S., et al. (1999). Effect of modulated microwave frequencies on the physiology of a cyanobacterium, Anabaena doliolum. Electro- and Magnetobiology 18(3): 221-232. 27. Moore, H. A., et al. (1979). Low-Intensity Microwave Radiation and the Virulence of Agrobacterium-Tumefaciens Strain-B6. Applied and Environmental Microbiology 37(1): 127-130. 28. Grundler, W., et al. (1977). Resonant Growth-Rate Response of Yeast-Cells Irradiated by Weak Microwaves. Physics Letters A 62(6): 463-466. 29. Grundler, W., et al. (1982). Resonant-Like Dependence of Yeast Growth-Rate on Microwave-Frequencies. British Journal of Cancer 45: 206-208. 30. Dardanoni, L., et al. (1985). Millimeter-Wave Effects on Candida-Albicans Cells. Journal of Bioelectricity 4(1): 171-176. 31. Tsen, K. T., et al. (2007). Inactivation of viruses by coherent excitations with a low power visible femtosecond laser. Virology Journal 4. 32. Fisher, M. B., et al. (2011). Simulated Sunlight Action Spectra for Inactivation of MS2 and PRD1 Bacteriophages in Clear Water. Environmental Science & Technology 45(21): 9249-9255. 33. Liu, T. M., et al. (2009). Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations. Applied Physics Letters 94(4). 34. World Health Organization. (2011). Manual for the laboratory diagnosis and virological surveillance of influenza. Geneva, World Health Organization. 35. Chen, H., et al. (2012). Partial and full PCR-based reverse genetics strategy for influenza viruses. PLoS One 7(9): e46378. 36. Greatorex, J. S., et al. (2010). Effectiveness of common household cleaning agents in reducing the viability of human influenza A/H1N1. PLoS One 5(2): e8987. 37. 行政院衛生署疾病管制局病毒性感染症合約實驗室標準操作流程 38. Hawkins, C. L. and M. J. Davies (1998). Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem J 332 ( Pt 3): 617-625. 39. Wigginton, K. R., et al. (2012). Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. Environmental Science & Technology 46(21): 12069-12078. 40. Ogata, N. (2012). Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site. J Gen Virol 93(Pt 12): 2558-2563. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62340 | - |
dc.description.abstract | 病毒是生活中常見造成人類致病的微生物,在人與人之間的傳播會造成疾病的流行。因此找出能廣效殺死病毒的方法一直是一個重要的議題。目前常用將病毒去活性的方法,化學法的部分有界面活性劑、有機溶劑及氧化劑等三類方法,各類方法因其作用機制的不同,而無法達到廣效將病毒去活性的效果,或是對人體具有毒性,因此更好的化學去活性方法仍有待開發。次氯酸是已知能有效將病毒去活性的氧化劑,目前常用的形式是次氯酸鈉水溶液(漂白水),但因其腐蝕性而在使用上有所限制。物理方法的部分,紫外線與放射線較常用於殺菌,也有用微波加熱的方式達到殺菌的效果。近年來科學家發現不產熱的微波,能將波的能量轉換成熱能以外的形式傳遞,例如動能,並且在使用特定頻率照射下能達到更好的殺菌效果,但是否對病毒也有類似的效果則屬未知。
Envirolyte公司的電極所製造之中性電解水,主成分為次氯酸且不含鈉。實際測試結果發現,此電解水(410 ppm)對於日常生活中常見的9種病毒(3種A型流感病毒、B型流感病毒、單純皰疹病毒、3種腸病毒、腺病毒)都具有相當好的去活性效果。接著進行濃度與作用時間之相關研究,發現此電解水對不同病毒的有效作用濃度有所不同,在最高作用濃度下(410 ppm),1分鐘內就完成去活性的作用。 電解水的作用機制方面,從流感病毒血球凝集試驗發現次氯酸會影響病毒之血球凝集素。與細胞結合能力試驗結果發現,次氯酸能破壞病毒與細胞膜結合,阻止病毒感染細胞達到去活性之效果,而破壞程度與病毒種類及次氯酸濃度有關。最後,以SDS PAGE分析兩種流感病毒之蛋白質受到次氯酸破壞的程度,發現HA、NA與NP蛋白質較容易受次氯酸影響,而B型流感病毒蛋白質較A型流感病毒H3N2蛋白質不易受破壞。 微波去病毒活性之研究,在與臺大醫工所劉子銘老師的合作下,探討微波對A型流感病毒H3N2之共振頻率。經過實驗後發現A型流感病毒H3N2的微波共振頻率約在8 GHz左右,而對頻率7 ~ 11 GHz的微波亦都有吸收。實際測試此共振能量的吸收是否能轉換成將病毒去活性的能量,結果發現,病毒感染力在非吸收頻率範圍內,有下降之趨勢;反之在有共振之特定頻率範圍內,病毒感染力有上升之現象。 總結而言,化學法之中性電解水,對於日常生活常見的致病病毒有很好的去活性效果,加上作用時間短及中性的特點,可廣泛運用於日常生活環境中的清潔消毒工作,達到預防疾病傳播的目的。而物理法微波共振方面,雖然得到的結果不顯著,但其研究數據仍可供未來相關研究之重要參考。 | zh_TW |
dc.description.abstract | Viruses are common pathogenic microorganism, and the transmission of virus between human could cause outbreak or epidemic infections. Several chemical and physical methods have been used to inactivate viral infectivity in the environment and to terminate the chain of viral transmission. Chemically, detergents, organic agents and oxidants were used to inactivate viruses, but those cannot reach broad range of effectiveness due to various acting mechanisms or toxicity to human. To overcome these disadvantages, some inactivation methods have been developed. Hypochlorous acid is a well-known oxidant which could effectively inactivate viruses, and sodium hypochlorite solution (bleach) was used widely in our daily life. However, due to the corrosiveness, its usage is limited. Physically, UV, radiation and microwave heating are usually used for sterilization. Recently, scientists discovered non-thermal microwave, which can transfer the energy directly to other energy modes, usually kinetic energy, rather than thermal energy. Expose to microwave at specific frequency may have the sterilizing activity against bacteria. The application of this strategy to viral inactivation is worth of exploration.
Neutral electrolyzed water made by Envirolyte electrodes containing hypochlorous acid without sodium. Neutral electrolyzed water (410 ppm of hypochlorous) has good inactivating effectiveness to nine common viruses (3 kinds of influenza A virus, influenza B virus, herpes simplex virus, adenovirus and 3 kinds of enterovirus). After testing for the various concentrations of hypochlorous acid and reaction time, we determined the effective concentrations to inactivate different viruses, and the inactivation reactions reach the end point in one minute with the highest concentrations (410 ppm). To understand the mechanism of inactivation by neutral electrolyzed water , we performed hemagglutination test after treating virus suspension with neutral electrolyzed water. The results indicated that hypochlorous acid may affect virus hemagglutinin protein. As result of cell binding assay, hypochlorous acid treatment may block virus binding to cells in a dose-dependent manner. Hypochlorous acid had less effects on the level of protein degradation of Influenza B virus than proteins of Influenza A virus H3N2 using SDS PAGE. The HA, NP/NA proteins were the most effective proteins of both viruses. In the microwave study cooperated with Dr. T.M. Liu, we studied the effect of microwave on influenza A virus H3N2. Microwave resonance spectrum (the virus absorbs microwaves) ranged 7 ~ 11 GHz, and the peak of absorption as resonant frequency was 8 GHz. In order to know the association between the absorption of microwave energy and the inactivation of virus, the residual viral infectivity after exposing microwave was analyzed. The results demonstrated that the absorption spectrum were not coincidence with the reduction of the virus infectivity. Instead, the viral infectivity increased at the absorption spectrum regions and decreased at the non-absorption spectrum region. The potential mechanism of this finding requires further investigation. In conclusion, neutral electrolyzed water can be used for the environmental and instrument cleaning works because of its good inactivating ability, short reaction time and neutral. Although the inactivating ability of microwave resonance is not clear, the observation in this study can provide further exploration of the microwave expose and virus inaction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:42:12Z (GMT). No. of bitstreams: 1 ntu-102-R00424004-1.pdf: 5159070 bytes, checksum: 87d194717fe0651e342d1177d8708c73 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstract v 目錄 viii 圖目錄 x 表目錄 xi 第一章、 緒論 1 第一節、 病毒的構造與分類 1 第二節、 各類病毒去活性方法 1 第三節、 次氯酸及其對生物性質之作用 2 第四節、 中性電解水 3 第五節、 微波及其對生物性質之作用 4 第六節、 微波對病毒之影響 4 第七節、 研究目的 5 第二章、 實驗材料與方法 6 第一節、 實驗材料 6 第二節、 實驗方法 9 1. 試劑之製備 9 2. 細胞培養 12 3. 各類臨床病毒分離株之繼代培養 12 4. 中性電解水之製備 13 5. 細胞毒性測試 13 6. 中性電解水病毒去活性試驗 13 7. 溶斑試驗 (plaque assay) 14 8. 病毒感染價試驗 (TCID50) 14 9. 血球凝集試驗 14 10. 病毒之細胞結合能力試驗 15 11. 病毒RNA萃取 15 12. 吸附於細胞之病毒RNA萃取(TRIZOL法) 15 13. qRT-PCR標準品製備 16 14. 反轉錄即時定量聚合酶連鎖反應(qRT-PCR) 20 15. 病毒之濃縮 20 16. 聚丙烯醯胺膠體電泳 (SDS PAGE) 21 17. 流感病毒微波吸收頻譜之測定 21 18. 微波共振對流感病毒去活性效果測試 21 19. 統計與分析軟體 22 第三章、 實驗結果 23 第一節、 中性電解水對各類病毒之去活性作用 23 1. 中性電解水對細胞之毒性 23 2. 各類病毒之去活性測試 23 3. 不同濃度之電解水去活性能力 23 4. 作用時間與去活性能力 24 5. 次氯酸對病毒蛋白質之影響 25 5.1 流感病毒之血球凝集能力 25 5.2 病毒與細胞之結合能力 26 5.3 中性電解水對於病毒蛋白質之影響 26 第二節、 微波共振對A型流感病毒H3N2之去活性作用 26 1. 流感病毒微波吸收頻譜之測定 26 2. 微波吸收對流感病毒去活性效果測試 27 第四章、 討論 28 第五章、 參考文獻 32 | |
dc.language.iso | zh-TW | |
dc.title | 中性電解水與微波共振對病毒去活性效果之研究 | zh_TW |
dc.title | Inactivation of Virus by Neutral Electrolyzed Water and Microwave Resonance | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李君男,張淑媛 | |
dc.subject.keyword | 病毒去活性:次氯酸,微波,流感病毒,腸病毒,單純皰疹病毒,腺病毒, | zh_TW |
dc.subject.keyword | Virus inactivation,Hypochlrous acid,Microwave,Influenza virus,Enterovirus,Adeno virus,Herpes simplex virus, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。