請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6232
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳錫侃 | |
dc.contributor.author | Yong-Hsing Chang | en |
dc.contributor.author | 張永興 | zh_TW |
dc.date.accessioned | 2021-05-16T16:23:42Z | - |
dc.date.available | 2018-07-11 | |
dc.date.available | 2021-05-16T16:23:42Z | - |
dc.date.copyright | 2013-07-11 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-05 | |
dc.identifier.citation | [1] M. van Schilfgaarde, I.A. Abrikosov, B. Johansson, Nature, 400 (1999) 46-49.
[2] E.L. Frantz, Properties and selection: nonferrous alloys and special-purpose materials, ASM International, 1990. [3] A.G. Gilbraith, Welding Engineer, 44 (1959) 79-80. [4] U. Ugaste, A.A. Kodentsov, F.J.J. Van Loo, Diffusion and Defect Data Pt.B: Solid State Phenomena, 72 (2000) 117-122. [5] M.M. Schwartz, Brazing, ASM International, 2003. [6] T. Gottlieb, C.S. Shira, Welding Journal 44 (1965). [7] F. Matsuda, H. Nakagawa, S. Minehisa, N. Sakabata, A. Ejima, K. Nohara, Transactions of JWRI, 13 (1984) 241-247. [8] B.K. Jasthi, W.J. Arbegast, S.M. Howard, Journal of Materials Engineering and Performance, 18 (2008) 925-934. [9] A. Ikai, K. Kimura, H. Tobushi, Journal of Intelligent Material Systems and Structures, 7 (1996) 646-655. [10] J. Beyer, E.J.M. Hiensch, P.A. Besselink, (1989) 199-206. [11] P. Schlossmacher, T. Haas, A. Schussler, Le Journal de Physique IV, 07 (1997) 251-256. [12] A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, M. Pozzi, Materials Science and Engineering: A, 273 (1999) 813-817. [13] M. Nishikawa, H. Tanaka, M. Kohda, T. Nagaura, K. Watanabe, Le Journal de Physique Colloques, 43 (1982) 839-844. [14] C. van der Eijk, H. Fostervoll, Z.K. Sallom, O.M. Akselsen, ASM Materials Solutions Conference. Pittsburgh, 2003. [15] S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, A. Yamamoto, Science and Technology of Welding and Joining, 15 (2010) 124-130. [16] J. Pouquet, R.M. Miranda, L. Quintino, S. Williams, The International Journal of Advanced Manufacturing Technology, 61 (2011) 205-212. [17] N. Dececco, J. Parks, Welding Journal, 32 (1953) 1071-1081. [18] R.K. Shiue, S.K. Wu, S.Y. Chen, Intermetallics, 11 (2003) 661-671. [19] C.A. Blue, R.Y. Lin, MRS Proceedings, Cambridge Univ Press, 1993. [20] T.Y. Yang, R.K. Shiue, S.K. Wu, Intermetallics, 12 (2004) 1285-1292. [21] R.H. Shiue, S.K. Wu, Intermetallics, 14 (2006) 630-638. [22] R.H. Shiue, S.K. Wu, Gold Bull, 39 (2006) 200-204. [23] R.K. Shiue, S.K. Wu, Y.T. Chen, C.Y. Shiue, Intermetallics, 16 (2008) 1083-1089. [24] J. R. Davis, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International, 2000. [25] 薛人豪, 國立臺灣大學材料科學與工程學研究所博士論文, 2006. [26] T.B. Massalasi, American Society of Metals, (1990). [27] C.M. Wayman, MRS Bulletin-materials Research Society, 18 (1993) 49-49. [28] J.A. Shaw, S. Kyriakides, Journal of the Mechanics and Physics of Solids, 43 (1995) 1243-1281. [29] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge University Press, 1999. [30] 張志偉, 國立台灣大學機械工程研究所碩士論文, 2003. [31] 詹志鴻, 國立台灣大學機械工程研究所碩士論文, 2003. [32] 楊宗恩, 國立臺灣大學材料科學與工程學研究所碩士論文, 2011. [33] 薛鈞尹, 國立臺灣大學材料科學與工程學研究所碩士論文, 2007. [34] P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, 1995. [35] J. van Beek, A. Kodentsov, F. van Loo, Journal of alloys and compounds, 217 (1995) 97-103. [36] F. van Loo, G. Bastin, A. Leenen, Journal of the Less Common Metals, 57 (1978) 111-121. [37] L.I. Duarte, U.E. Klotz, C. Leinenbach, M. Palm, F. Stein, J.F. Loffler, Intermetallics, 18 (2010) 374-384. [38] G. Cacciamani, J. De Keyzer, R. Ferro, U.E. Klotz, J. Lacaze, P. Wollants, Intermetallics, 14 (2006) 1312-1325. [39] F. van Loo, J. Vrolijk, G. Bastin, Journal of the Less Common Metals, 77 (1981) 121-130. [40] G.R. Kamat, Welding Journal, 67 (1988) 44-46. [41] P. He, J. Zhang, R. Zhou, X. Li, Materials Characterization, 43 (1999) 287-292. [42] W.D. Zhuang, T.W. Eagar, Metallurgical and Materials Transactions A, 28 (1997) 969-977. [43] U. Ugaste, A.A. Kodentsov, F.J.J. van Loo, Solid State Phenomena, 72 (2000) 117-122. [44] S.V. Divinski, F. Hisker, C. Herzig, R. Filipek, M.J. Danielewski, Defect and Diffusion Forum, 237 (2005) 50-61. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6232 | - |
dc.description.abstract | 本研究分別使用BAg-8、Cusil-ABA及Ticusil三種銀基填料,紅外線硬銲異質接合Ti50Ni50與Invar合金,探討不同的參數下填料之潤濕行為、顯微組織演變、接點剪應力強度及破壞模式等。三種填料皆對Invar基材有良好的潤濕性,且潤濕性會隨添加Ti的含量而增加。BAg-8不與Invar反應,Cusil-ABA與Ticusil則會與Invar反應生成Ni3Ti(或CuNiTi)與Fe2Ti相。以BAg-8填料硬銲接合時,在Ti50Ni50側生成由Ni3Ti與Fe2Ti組成的介金屬相層,其餘銲道由Ag-Cu共晶組織構成,在850 oC、5分鐘時的平均剪應力值可達158MPa,在Ti50Ni50側生成脆性破壞。以Cusil-ABA及Ticusil填料硬銲接合時,從Ti50Ni50到Invar依序生成CuNiTi、Ag-Cu共晶組織、Ni3Ti(或CuNiTi)與Fe2Ti相。使用Cusil-ABA填料在850 oC、5分鐘時可得最佳之剪應力值249 MPa,而Ticusil填料在900 oC、1分鐘時的平均剪應力值可達230MPa。Cusil-ABA與Ticusil填料兩者破壞皆從Fe2Ti相起始,呈現脆性破壞形貌。本研究亦根據上述結果,使用在基材電鍍銅及雙層銀基填料等兩種方法,以改善銀基填料硬銲接合的可行性。紅外線硬銲接合Ti50Ni50/Cusil-ABA/Cu/Invar時銲道由CuNiTi、Ag-rich、CuNiTi與Cu-rich相所組成。使用雙層銀基填料的銲道顯微組織近似於單獨使用Cusil-ABA填料者,在850 oC、3分鐘時Ti50Ni50/Cusil-ABA/BAg-8/Invar接點的平均剪應力值可達212MPa。實驗結果顯示Cusil-ABA填料具有接合硬銲異質接合Ti50Ni50與Invar合金之潛力。 | zh_TW |
dc.description.abstract | Interfacial reactions, microstructural evolution and shear strength of infrared brazed Ti50Ni50 and Invar joint using BAg-8, Cusil-ABA, and Ticusil filler foils have been investigated. All Ag-based fillers well wet the Invar substrate, and their wettability can be further improved by minor Ti addition. The brazed joint using BAg-8 is comprised of Ag-Cu eutectic. There is no interfacial reaction layer between BAg-8 braze and Invar substrate. However, Fe2Ti and Ni3Ti intermetallic compounds are observed close to Ti50Ni50 substrate. Average shear strength of Ti50Ni50/ BAg-8/Invar joint brazed at 850 oC for 300 s is 158 MPa. The joint is fractured along the interface close to Ti50Ni50 substrate, and fractograph is featured with cleavage dominated fracture. For Cusil-ABA and Ticusil brazed joints, the sequence of identified phases from Ti50Ni50 to Invar substrate is CuNiTi, Ag-Cu eutectic and mixture of Fe2Ti and Ni3Ti. The specimen brazed at 850 oC for 300 s using Cusil-ABA filler demonstrates the best average shear strength of 249 MPa. The average shear strength of Ti50Ni50/Ticusil/Invar joint brazed at 900 oC for 60 s is 230 MPa. Cracks are initiated from Fe2Ti phase for both Cusil-ABA and Ticusil brazed joints, and their fractographs are dominated by quasi-cleavage fracture. Two modified approaches of infrared brazed Ti50Ni50 and Invar joints using the Cusil-ABA braze are also investigated. For Cu electroplated Invar substrate, the brazed Ti50Ni50/Cusil- ABA/Cu/Invar joint is comprised of CuNiTi, Ag-rich and Cu-rich phases. For the dual filler foils method, the microstructure of brazed Ti50Ni50/Cusil-ABA/BAg-8/Invar joint is similar to that of Ti50Ni50/Cusil-ABA/Invar joint with shear strength of 212 MPa. Based on the experimental observation, the Cusil-ABA foil shows the potential in brazing Ti50Ni50 and Invar substrates. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:23:42Z (GMT). No. of bitstreams: 1 ntu-102-R00522719-1.pdf: 24843733 bytes, checksum: 46c27e504286c1ab1fcf758007fd7288 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 第一章 前言 1 第二章 文獻回顧 3 2-1母材合金性質 3 2-1-1 Invar合金 3 2-1-2 Ti50Ni50形狀記憶合金 4 2-2異質合金接合製程研究 5 2-2-1硬銲接合 (Brazing) 5 2-2-2 Invar合金之接合 7 2-2-3 Ti50Ni50合金之接合 7 2-3 硬銲填料 8 2-3-1硬銲填料的選用 8 2-3-2 Ag-Cu共晶填料 8 2-3-3 Ag-Cu-Ti活性硬銲填料 9 2-4紅外線硬銲接合 9 第三章 實驗方法 23 3-1 基材之試片準備 23 3-1-1 Invar基材 23 3-1-2 Ti50Ni50 基材 23 3-2 硬銲填料之準備 24 3-2-1 硬銲填料 24 3-2-2 潤濕小球準備 25 3-3紅外線硬銲接合製程 25 3-3-1實驗設備 25 3-3-2金相與剪力試片之硬銲接合實驗 25 3-3-3動態潤濕角量測實驗 26 3-3-4持溫時間與溫度之控制 26 3-4硬銲試片之分析 27 3-4-1分析前處理 27 3-4-2剪力試驗 27 3-4-3掃描式電子顯微鏡 28 3-4-4電子束微分析儀(EPMA) 28 3-5實驗流程 28 第四章 銀基填料紅外線硬銲接合Ti50Ni50與Invar合金 37 4-1 前言 37 4-2 銀基填料對Invar合金基材的潤濕性與顯微組織分析 37 4-3銀基填料紅外線硬銲接合Ti50Ni50與Invar合金之顯微組織分析 40 4-4銀基填料紅外線硬銲接合Ti50Ni50合金與Invar合金之剪應力強度 44 4-5本章結論 46 第五章 改善銀基填料紅外線硬銲接合Ti50Ni50與Invar合金之探討 103 5-1前言 103 5-2 Invar合金表面鍍層分析 104 5-3 Cusil-ABA紅外線硬銲接合Ti50Ni50與電鍍Cu後Invar合金顯微組織分析 105 5-4 雙層銀基填料紅外線硬銲接合Ti50Ni50與Invar合金顯微組織分析 107 5-5兩種方法改善紅外線硬銲接合Ti50Ni50合金與Invar合金之剪應力強度 108 5-6兩種改善方法之討論與建議 108 5-7 本章結論 110 第六章 結論 132 參考文獻 134 | |
dc.language.iso | zh-TW | |
dc.title | 紅外線硬銲接合Ti50Ni50形狀記憶合金與Invar合金之研究 | zh_TW |
dc.title | The Study of Infrared brazing Ti50Ni50 SMA and Invar Alloy | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 薛人愷 | |
dc.contributor.oralexamcommittee | 王建義,薄慧雲 | |
dc.subject.keyword | 紅外線硬銲接合,Ti50Ni50,Invar,銀基填料,顯微組織,剪力強度, | zh_TW |
dc.subject.keyword | Infrared brazing,Ti50Ni50,Invar,Ag-based fillers,Shear strength, | en |
dc.relation.page | 136 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-07-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 24.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。