請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉怜(Yuh-Lien Chen) | |
| dc.contributor.author | Wen-Ching Shen | en |
| dc.contributor.author | 沈紋君 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:41:26Z | - |
| dc.date.available | 2013-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-12 | |
| dc.identifier.citation | Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F, La Rocca G. New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development. 2010; 19: 423-438.
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275: 964-966. Bakker K, Apelqvist J, Schaper NC. Practical guidelines on the management and prevention of the diabetic foot 2011. Diabetes/Metabolism Research and Reviews. 2012; 28: 225-231. Baksh D, Yao R and Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007; 25: 1384-1392. Bento CF, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia. 2011; 54: 1946-1956. Bosch-Marce M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, Zhang H, Strazza M, Rey S, Savino L, Zhou YF, McDonald KR, Na Y, Vandiver S, Rabi A, Shaked Y, Kerbel R, LaVallee T, Semenza GL. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circulation Research. 2007; 101: 1310-1318. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, S Lindberg S, Pereira T, Yla-Herttuala S, Poellinger L, Brismar K, Catrina SB. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105: 19426-19431. Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, Agostini C, Avogaro A. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia. 2006; 49: 3075-3084. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, Johnson RS, Imitya HZ z, Simon MC, Fredlund E, Greten FR, Rius J and Lewis CE. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood. 2009; 114: 844-859. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology. 1996; 16: 4604-4613. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells. 2006; 24: 115-124. Frydelund-Larsen L, Penkowa M, Akerstrom T, Zankari A, Nielsen S, Pedersen BK. Exercise induces interleukin-8 receptor (CXCR2) expression in human skeletal muscle. Experimental Physiology. 2007; 92: 233-240. Georgescu A, Alexandru N, Constantinescu A, Titorencu I and Popov D. The promise of EPC-based therapies on vascular dysfunction in diabetes. European Journal of Pharmacology. 2011; 669: 1-6. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research. 2008; 103: 1204-1219. Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ, Pratt RE, Mulligan RC, Dzau VJ. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation. 2003; 108: 2710-2715. Kim KS, Rajagopal V, Gonsalves C, Johnson C, Kalra VK. A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. Journal of Immunology. 2006; 177: 7211-7224. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage. 2005; 13: 845-853. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation. 2001; 107: 1395-402. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis and Rheumatism. 2004; 50: 817-827. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001; 103: 634-637. Kawamoto A, Tkebuchava T, Yamaguchi JI, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003; 107: 461-468. Kebir A, Harhouri K, Guillet B, Liu JW, Foucault-Bertaud A, Lamy E, Kaspi E, Elganfoud N, Vely F, Sabatier F, Sampol J, Pisano P, Kruithof EK, Bardin N, Dignat-George F, Blot-Chabaud M. CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo. Circulation Research. 2010; 107: 66-75. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992; 258: 1798-1801. La Rocca G, Lo Iacono M, Corsello T, Corrao S, Farina F, Anzalone R. Human Wharton's Jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Current Stem Cell Research & Therapy. 2013; 8: 100-113. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology. 2003; 170: 3369-3376. Liu ZJ, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxidants & Redox Signaling. 2008; 10: 1869-1882. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell. 2010; 40: 294-309. Miettinen H, V Salomaa. Diabetes and macrovascular disease. Coronary Artery Disease. 1996; 7: 708-714. Murdoch C, Monk PN, Finn A. Cxc chemokine receptor expression on human endothelial cells. Cytokine. 1999; 11: 704-712. Pajusola K, Kunnapuu J, Vuorikoski S, Soronen J, Andre H, Pereira T, Korpisalo P, Yla-Herttuala S, Poellinger L, Alitalo K. Stabilized HIF-1α is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. Federation of American Societies for Experimental Biology Journal. 2005; 19: 1365-1367. Rey S, Lee K, Wang CJ, Gupta K, Chen S, McMillan A, Bhise N, Levchenko A, Semenza GL. Synergistic effect of HIF-1α gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106: 20399-20404. Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research. 2010; 86: 236-242. Rey S, Luo W, Shimoda LA, Semenza GL. Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood. 2011; 117: 4988-4998. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003; 21: 105-110. Sarkar K, Fox-Talbot K, Steenbergen C, Bosch-Marce M, Semenza GL. Adenoviral transfer of HIF-1α enhances vascular responses to critical limb ischemia in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106: 18769-18774. Scheubel RJ, Zorn H, Silber RE, Kuss O, Morawietz H, Holtz J, Simm A. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology. 2003; 42: 2073-2080. Schmidt A, Brixius K, Bloch W. Endothelial precursor cell migration during vasculogenesis. Circulation Research. 2007; 101: 125-136. Song L, Young NJ, Webb NE, Tuan RS . Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells and Development. 2005; 14: 712-721. Teodelinda M, Michele C, Sebastiano C, Ranieri C, Chiara G. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials. 2011; 32: 3689-3699. Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008; 26: 591-599. Tse W, Laughlin M. Cord blood transplantation in adult patients. Cytotherapy. 2005; 7: 228-242. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research. 2004; 95: 343-353. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells. 2004; 22: 1330-1337. Wang SH, Lin SJ, Chen YH, Lin FY, Shih JC, Wu CC, Wu HL, Chen YL. Late Outgrowth endothelial cells derived from wharton jelly in human umbilical cord reduce neointimal formation after vascular injury: involvement of pigment epithelium-derived Factor. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009; 29: 816-822. Wang Y, Sun A, Xue J, Feng C, Li J, Wu J. Bone marrow derived stromal cells modified by adenovirus-mediated HIF-1alpha double mutant protect cardiac myocytes against CoCl2-induced apoptosis. Toxicology In Vitro. 2009; 23: 1069-75. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002; 105: 3017-3024. Westvik TS, Fitzgerald TN, Muto A, Maloney SP, Pimiento JM, Fancher TT, Magri D, Westvik HH, Nishibe T, Velazquez OC, Dardik A. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. Journal of Vascular Surgery. 2009; 49: 464–473. Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, Gu DS, Han ZC, Liu YL. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. Journal of Cellular Biochemistry. 2007; 100: 608-616. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS . Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One. 2008; 3: e3336. Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N, Kalka-Moll W, Baumgartner I, Di Santo S, Kalka C. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis. 2010; 211: 103-109. Zhu CJ, Dong JX, Li J, Zhang MJ, Wang LP, Luo L. Preliminary study on the mechanism of acupoint injection of bone marrow mesenchymal stem cells in improving blood flow in the rat of hind limb ischemia. Journal of Traditional Chinese Medicine. 2011; 31: 241-245. Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, Rehman J. Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. American Journal of Physiology. Heart and Circulatory Physiology. 2009; 296: H1675-H1682. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62328 | - |
| dc.description.abstract | 由於逐漸攀高的糖尿病盛行率及其防治與治療已被視為非常重要的課題。嚴重糖尿病可引起諸多併發症。其中,病患的足部血管病變造成微循環不良,更是容易導致糖尿病患者下肢傷口不易癒合及其相關感染的產生,嚴重時常會導致下肢截肢。近幾年來研究發現骨髓衍生之內皮前驅細胞(EPC)可以降低動物組織缺血性傷害,促使血管新生並提高存活率。隨著其他器官幹細胞的發現以及對幹細胞特性,包括如何幫助受損器官修補之潛能的瞭解,運用幹細胞於治療缺血性傷害是一新的策略。有別於單一藥物的治療,幹細胞可於受傷組織分泌細胞激素、改善血管功能或直接分化為需要的細胞來幫助血管再生。本篇研究之主要目的想要藉由臍帶間質幹細胞所分化之內皮前驅細胞(WJ-EPC),植入至糖尿病鼠之缺血下肢,探討EPC影響糖尿病小鼠之缺血性傷害及其相關機轉。首先,藉由股動脈截斷術造成下肢缺血,然後將EPC植入至糖尿病鼠下肢缺血的肌肉內,藉由下肢血流、外觀等觀察來驗證植入EPC的治療效果。實驗結果發現,在缺血性下肢糖尿病鼠的血流會降低、血管密度減少以及增加骨骼肌細胞凋亡。而這些組織傷害可藉由植入EPC而被明顯減緩。除此之外,以免疫組 織化學染色法鑑別,發現植入骨骼肌之EPC在缺氧的微環境下有表現缺氧誘導因子(Hypoxia-inducible factor-1a,HIF-1α)及介白素8 ( interleukin-8,IL-8)。在體外實驗方面,我們將EPC培養在缺氧環境下,發現EPC會大量表現HIF-1α並且可在細胞培養液中測得大量的IL-8。此外,我們以在缺氧所獲得EPC培養液(CM-H)與骨骼肌細胞株(NOR)共同培養在缺氧環境中,結果發現CM-H可以降低骨骼肌細胞之促細胞凋亡蛋白質的表現量、增加骨骼肌細胞抗細胞凋亡蛋白質的表現量以及促進EPC的移動性及脈管形成。上述這些現象在轉染HIF-1α siRNA 或IL-8 siRNA至EPC後,其缺氧所獲得EPC培養液不再具有保護骨骼肌細胞免於細胞凋亡的功效,也失去促進EPC的移動性及脈管形成的能力。綜合本研究結果顯示,WJ可當為EPC的主要來源,同時在糖尿病缺血性組織疾病的臨床治療,WJ-EPC的治療可視為一新穎性策略療法。在本研究中,植入EPC至糖尿病鼠的缺血性下肢可經由HIF-1α/IL-8訊號路徑減緩傷害,所以EPC及其訊號機轉的保護作用扮演一非常重要角色。 | zh_TW |
| dc.description.abstract | Peripheral arterial diseases, the major complication of diabetes, can result in lower limb amputation. As endothelial progenitor cells (EPCs) are involved in neovascularization, the study was to examine whether EPCs isolated from Wharton’s jelly (WJ-EPCs) of the umbilical cord, a rich source of mesenchymal stem cells, could reduce ischemia-induced hind limb injury in diabetic mice. We evaluated the effects of WJ-EPC transplantation on hind limb injury caused by femoral artery ligation in mice with streptozotocin (STZ)-induced diabetes. We found that the ischemic hind limb in mice with streptozotocin-induced diabetes showed decreased blood flow and capillary density and increased cell apoptosis and that these effects were significantly inhibited by injection of WJ-EPCs. In addition, HIF-1α and IL-8 were highly expressed in transplanted WJ-EPCs in the ischemic skeletal tissues and were present at high levels in hypoxia-treated cultured WJ-EPCs. Moreover, incubation of the NOR skeletal muscle cell line under hypoxic conditions in conditioned medium from EPCs cultured for 16 h under hypoxic conditions resulted in decreased expression of pro-apoptotic proteins and increased expression of anti-apoptotic proteins. The inhibition of HIF-1α or IL-8 expression by EPCs using HIF-1α siRNA or IL-8 siRNA, respectively, prevented this change in expression of apoptotic-related proteins. Wharton’s jelly in the umbilical cord is a valuable source of EPCs and transplantation of these EPCs represents an innovative therapeutic strategy for treating diabetic ischemic tissues. The HIF-1α/IL-8 signalling pathway plays a critical role in the protective effects of EPCs in the ischemic hind limb of diabetic mice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:41:26Z (GMT). No. of bitstreams: 1 ntu-102-D98446006-1.pdf: 2706929 bytes, checksum: bfbd0e2708242c37697a90fe55fe64d7 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要------------------------------------------------- I
英文摘要------------------------------------------------- III 英文縮寫與全文對照----------------------------------------- V 第一部份 文獻回顧------------------------------------------------- 1 一 引言------------------------------------------------- 1 二 糖尿病及下肢缺血之成因----------------------------------- 2 三 前驅細胞之來源種類及功能應用------------------------------ 3 四 Hypoxia-inducible factor-1α ( HIF-1α)與缺血性下肢之關聯- 6 五 Interleukin-8 (IL-8)與下肢缺血及血管新生之關聯------------ 8 研究動機------------------------------------------------- 10 儀器設備------------------------------------------------- 11 實驗材料與試劑-------------------------------------------- 11 實驗用溶液配方-------------------------------------------- 15 材料與方法----------------------------------------------- 17 一 內皮前驅細胞之純化與培養--------------------------------- 17 二 內皮前驅細胞之鑑定-------------------------------------- 18 DiI-acetylated LDL uptake------------------------------ 18 免疫細胞螢光染色------------------------------------------ 18 流式細胞儀分析-------------------------------------------- 19 三 糖尿病鼠模式之建立-------------------------------------- 19 四 雷射都卜勒影像分析內皮前驅細胞植入缺血下肢之血流分布---------- 20 五 下肢功能性之評分--------------------------------------- 21 六 組織切片之收集,形態分析和免疫組織化學染色------------------ 22 七 電子顯微鏡術------------------------------------------ 23 八 TUNEL染色------------------------------------------- 23 九 分析細胞與骨骼肌組織之蛋白質表現-------------------------- 24 十 條件式培養液(condition medium, CM)的製備及其對NOR細胞的影響 --------------------------------------------------------25 十一 多重免疫分析與酵素免疫分析法檢測細胞培養液中IL-8之含量------ 26 十二 以電穿孔法轉染siRNA---------------------------------- 26 十三 細胞移行分析----------------------------------------- 27 十四 脈管形成分析----------------------------------------- 27 十五 數據統計分析----------------------------------------- 28 結果--------------------------------------------------- 29 一 臍帶間質細胞具有分化成內皮前驅細胞(WJ-EPC)之能力----------- 29 二 植入內皮前驅幹細胞(EPC)可有效恢復糖尿病鼠下肢股動脈截斷後之血流及功能 性恢復--------------------------------------------------- 29 三 植入EPC可有效改善糖尿病鼠下肢缺血後之肌肉組織形態------------ 30 四 植入EPC在糖尿病鼠下肢缺血後之血管新生情形------------------ 31 五 植入EPC減少下肢缺血性組織細胞之凋亡及來自缺氧性EPC所獲得培養液(CM-H)增加缺氧性骨骼肌細胞株(NOR cells)抗凋亡蛋白質表現情形-------- 32 六 植入EPC經由HIF-1α/IL-8訊號路徑減少糖尿病鼠缺血性下肢之組織傷害 ------------------------------------------------33 七 HIF-1α及IL-8 可以提高EPC移動性和脈管形成能力-------------- 35 討論---------------------------------------------------- 36 結論---------------------------------------------------- 43 參考文獻------------------------------------------------- 44 附圖---------------------------------------------------- 52 圖一 臍帶內皮前驅細胞 (WJ-EPC)之特徵------------------------ 52 圖二 STZ誘導ICR小鼠高血糖---------------------------------- 53 圖三 植入的EPC能有效的改善糖尿病鼠因下肢股動脈截斷手術後所引起的下肢缺血血流---------------------------------------------------- 54 圖四 動脈截除手術後立即植入EPC,在第7天後,植入的細胞能有效的改善肌肉組織形態-------------------------------------------------- 56 圖五 植入的EPC,在第7天後,糖尿病鼠缺血性下肢肌肉組織之微血管密度表現情形------------------------------------------------------ 57 圖六 植入的EPC,在第7天後,糖尿病鼠缺血性下肢肌肉組織之細胞凋亡情形,以及在缺氧環境中NOR cells與CM-H在缺氧環境共同培養下其凋亡或抗凋亡蛋白質之表現情形----------------------------------------------- 58 圖七 HIF-1α及IL-8在缺血性下肢肌肉組織之表現以及來自EPC之HIF-1α及IL-8對NOR cells在缺氧環境中影響相關凋亡蛋白質之表現---------------- 61 圖八 CM-H對EPC移動能力和脈管形成能力之影響-------------------- 64 圖九 HIF-1α及IL-8訊號路徑在活體內及活體外參與調控缺血性下肢與缺氧環境中NOR cells之血管新生及凋亡作用------------------------------ 66 第二部份 中文摘要------------------------------------------------- 67 英文摘要------------------------------------------------- 69 文獻回顧------------------------------------------------- 71 引言---------------------------------------------------- 71 一 急性腎損傷與IS及致炎性細胞激素之關聯----------------------- 73 二 IS (indoxyl sulfate, IS)與黏附蛋白之關係 ----------------74 進行中之初步結果------------------------------------------ 77 一 探討IS是否會增強IL-1β所誘導之HUVEC表現E-selectin黏附子----- 77 1. IS處理對 HUVEC不具毒性--------------------------------- 77 2. IL1-β刺激HUVEC表現E selectin 之情形-------------------- 77 3. IS對IL1β處理HUVEC表現E- selectin之影響----------------- 78 4. OAT抑制劑對IS刺激IL1-β處理HUVEC表現E-selectin之影響------ 78 二 探討IS對IL1β處理HUVEC是否經由MAPKs訊號參與調控E-selectin之表現 ----------------------- --------------------------------79 1. IS刺激IL1-β處理HUVEC之MAPKs的磷酸化表現情形---------------79 2. MAPKs抑制劑對IS刺激IL1-β處理HUVEC表現 E-selectin之影響--- 79 未來實驗研究方向-------------------------------------------81 參考文獻------------------------------------------------- 83 附圖---------------------------------------------------- 86 圖一 IS對HUVEC細胞活性之影響------------------------------- 86 圖二 IS對IL-1β所處理之HUVEC表現E-selectin黏附因子之影響------ 87 圖三 IS加強IL-1β所處理之HUVEC表現E-selectin黏附因子之MAPK的影響 --------------------------------------------------------89 Appendix----------------------------------------------- 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內皮前驅細胞 | zh_TW |
| dc.subject | 介白素8 | zh_TW |
| dc.subject | 缺氧誘導因子 | zh_TW |
| dc.subject | endothelial progenitor cells | en |
| dc.subject | interleukin-8 | en |
| dc.subject | Hypoxia-inducible factor | en |
| dc.title | 臍帶間質組織衍生內皮前驅細胞經由HIF-1α/IL-8
減少糖尿病鼠下肢缺血性傷害 | zh_TW |
| dc.title | Endothelial progenitor cells derived from Wharton’s jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF-1α/IL-8 expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 歐陽品(Pin Ouyang),王懷詩(Hwai-Shi Wang),吳建春(Jiahn-Chun Wu),林水龍(SHUEI-LIONG LIN),王淑慧(Shu-Huei Wang) | |
| dc.subject.keyword | 內皮前驅細胞,缺氧誘導因子,介白素8, | zh_TW |
| dc.subject.keyword | endothelial progenitor cells,Hypoxia-inducible factor,interleukin-8, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
