請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳思寬(Shi-Kuan Chen) | |
| dc.contributor.author | Sheng-Lun Hu | en |
| dc.contributor.author | 胡勝綸 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:39:59Z | - |
| dc.date.available | 2016-07-19 | |
| dc.date.copyright | 2013-07-19 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-15 | |
| dc.identifier.citation | 【中文文獻】
[1] 謝俊魁與林建甫(2004),「緩長記憶與狀態變換」,經濟論文叢刊,32(2),193-232 [2] 彭貴田(2006),「緩長記憶效應下的選擇權評價」,國立政治大學商學研究所碩士論文 [3] 張正利(2007),「利用赫斯特指數及有效報酬衡量國內股票型共同基金績效表現」,國立臺灣大學財務金融研究所碩士論文 [4] 徐守德,柯素琴與戴妙玲(2009),「國際股價指數的長記憶探討」,《臺灣銀行季刊》,60(3),277-299 [5] 馬慧君(2009),「碎形市場假說下分析工具之研究與探討」,國立臺灣大學財務金融研究所碩士論文 [6] 張劉權(2012),「外匯市場之長期記憶性探討-以Hurst指數分析」,國立臺灣大學國際企業研究所碩士論文 【英文文獻】 [1] A. Bărbulescu, C. Sebran, C. Maftei(2010), “Statistical analysis and evaluation of Hurst coefficient for annual and monthly precipitation time series”, WSEAS Transactions on Mathematics, 9(10), 791 – 800 [2] A. L. Turner, E. J. Weigel(1990), “An analysis of stock market volatility”, Russell Research Commertaries, Frank Russell Company, Tacoma, WA. [3] Benoit B. Mandelbrot(1960), “The Pareto-Levy law and the distribution of income”, International Economic Review, 1(2), 79 – 106 [4] Benoit B. Mandelbrot, Howard M. Taylor(1967), “On the Distribution of Stock Price Differences”, Operations Research, 15(6), 1057 – 1062 [5] Benoit B. Mandelbrot, John W. Van Ness(1968), “Fractional Brownian Motions, Fractional Noises and Applications”, SIAM Review, 10(4), 422 – 437 [6] Benoit B. Mandelbrot(1971), “A Fast Fractional Gaussian Noise Generator”, Water Resources Research, 7(3), 543 – 553 [7] Benoit B. Mandelbrot(1977), Fractals: form, chance, and dimension, W. H. Freeman & Company [8] Burton G. Malkiel(2003), “The Efficient Market Hypothesis and Its Critics”, Journal of Economic Perspectives, 17(1), 59 – 82 [9] C. K. Peng, S. V. Buldyrev, “Finite-size effects on long-range correlations: Implications for analyzing DNA sequences”, Phys. Rev. E, 47(5), 3730 – 3733 [10] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger(1994), 'Mosaic organization of DNA nucleotides,' Phys. Rev. E, 49(2), 1685 – 1689 [11] Daniel Kahneman, Amos Tversky(1979), “Prospect Theory: An Analysis of Decision under Risk”, Econometrica, 47(2), 263 – 292 [12] Donald B. Keim(1983), “Size-related anomalies and stock return seasonality: Further empirical evidence”, Journal of Financial Economics, 12(1), 13 – 32 [13] D. Grech, Z. Mazur(2004), “Can one make any crash prediction in finance using the local Hurst exponent idea?” , Physica A, 336, 133 – 145 [14] Daniel O. Cajueiro, Benjamin M. Tabak(2004), “Possible causes of long-range dependence in the Brazilian stock market”, Physica A, 345(3-4), 635 – 645 [15] Daniel O. Cajueiro, Benjamin M. Tabak(2005), “The rescaled variance statistic and the determination of the Hurst exponent”, Mathematics and Computers in Simulation, 70(3), 172 – 179 [16] Daniel O. Cajueiro, Benjamin M. Tabak(2006), “Testing for Predictability in Equity Returns for European Transition Markets”, Economic Systems, 30(1), 56 – 78 [17] D. Grech, G. Pamuła(2008), “The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market”, Physica A , 387(16-17), 4299 – 4308 [18] Daniel O. Cajueiro, Benjamin M. Tabak(2008), “Testing for long-range dependence in world stock markets”, Chaos, Solitons & Fractals, 37(3), 918 – 927 [19] Eugene F. Fama(1965), “The Behavior of Stock-Market Prices”, The Journal of Business, 38(1), 34 – 105 [20] Eugene F. Fama(1970), “Efficient Capital Markets: A Review of Theory and Empirical Work”, The Journal of Finance, 25(2), 383 – 417 [21] Eugene F. Fama and Kenneth R. French(1988), “Permanent and Temporary Components of Stock Prices”, Journal of Political Economy, 96(2), 246 – 273 [22] Eugene F. Fama and Kenneth R. French(1993), “Common risk factors in the returns on stocks and bonds”, Journal of Financial Economics, 33(1), 3 – 56 [23] E. E. Peters(1994), Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, John Wiley and Sons [24] E. E. Peters(1996), Chaos and order in the capital markets: a new view of cycles, prices, and market volatility, Wiley Finance [25] G. Hawawini, D. B. Keim(1995), “On the predictability of common stock returns: World-wide evidence”, Handbooks in Operations Research and Management Science, 9(17), 497 – 544 [26] H. E. Hurst(1950), The Nile Basin: The hydrology of the Sobat and White Nile and the topography of the Blue Nile and Atbara, Egypt. Physical Dept. Paper [27] I. Z. Rejichi, C. Aloui(2012), “Hurst exponent behavior and assessment of the MENA stock markets efficiency”, Research in International Business and Finance, 26(3), 353 – 370 [28] J. M. Poterba, L. H. Summers(1988), “Mean reversion in stock prices: Evidence and Implications”, Journal of Financial Economics, 22(1), 27 – 59 [29] J. Y. Campbell, R. J. Shiller(1988), “Stock Prices, Earnings, and Expected Dividends”, The Journal of Finance, 43(3), 661 – 676 [30] J. B. Bassingthwaighte, L. S. Liebovitch, B. J. West(1994), Fractal Physiology, American Physiological Society [31] J. S. Howe, D. W. Martin, B. G. Wood Jr.(1999), “Much ado about nothing: Long-term memory in Pacific Rim equity markets Long-term memory in Pacific Rim equity markets”, IRFA, 8(2), 139 – 151 [32] J. Alvarez-Ramirez, J. Alvarez, E. Rodriguez, G. Fernandez-Anaya(2008), “Time-varying Hurst exponent for US stock markets”, Physica A, 387(24), 6159 – 6169 [33] Kenneth R. French(1980), “Stock returns and the weekend effec”, Journal of Financial Economics, 8(1), 55 – 69 [34] Krzysztof Domino(2011), “The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange”, Physica A, 390(1), pages 98 – 109 [35] Louis Bachelier(1900), “Theorie de la Speculation”, Annales Scientifiques de L'Ecole Normale Superieure, 3(17), 21 – 88 [36] A. W. Lo, H. Mamaysky, J. Wang(2000), “Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation”, The Journal of Finance, 55(4), 1705 – 1770 [37] A. W. Lo, A. C. MacKinlay(2001), A Non-Random Walk Down Wall Street , Princeton University Press [38] Ladislav Krištoufek(2010), “Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals”, AUCO Czech Economic Review, 3, 315 – 329 [39] M. F. M. Osborne(1959), “Brownian motion in the stock market”, Operations Research, 7(2), 145 – 173 [40] Norbert Wiener(1923), “Differential space”, Journal of Mathematical Physics, 2, 131 – 174 [41] N. Vandewalle, M. Ausloos(1997), “Coherent and random sequences in financial fluctuations”, Physica A, 246(3-4), 454 – 459 [42] P. H. Cootner(1964), The random character of stock market prices, MIT Press, [43] R. Ball(1978), “Anomalies in relationships between securities' yields and yield-surrogates”, Journal of Financial Economics, 6(2-3), 103 – 126 [44] R. A. Haugen, J. Lakonishok(1988), The Incredible January Effect: The Stock Market's Unsolved Mystery, Irwin Professional Pub. [45] R. J. Schiller(2000), “The Irrational Exuberance”, Economic Affairs, 20(4), 59 – 63 [46] R. L. Costa, G. L. Vasconcelos(2003), “Long-range correlations and nonstationarity in the Brazilian stock market”, Physica A, 329(1-2), 231 – 248 [47] S. Francis Nicholson(1960), “Price-Earnings Ratios” Financial Analysts Journal, 16(4) 16(4), 43 – 45 [48] S. Basu(1983), “The relationship between earnings' yield, market value and return for NYSE common stocks: Further evidence”, Journal of Financial Economics, 12(1), 129 – 156 [49] T. H. Rydberg,(1997), “The normal inverse gaussian levy process: simulation and approximation”, Communications in Statistics. Stochastic Models, 13(4), 887 – 910 [50] W. Willinger, M. S. Taqqu, V. Teverovsky(1999), “A critical look at Lo's modified R/S statistic”, Journal of Statistical Planning and Inference, 80(1-2), 211 – 227 [51] W. F. M. De Bondt, R. Thaler, “Does the Stock Market Overreact?”, The Journal of Finance, 40(3), 793 – 805 [52] Xu Shao-jun, Jin Xue-jun(2009), “Predicting drastic drop in Chinese stock market with local Hurst exponent”, ICMSE 2009, 1309 – 13150 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62306 | - |
| dc.description.abstract | 水文學家Hurst被稱為「尼羅河之父」,其所發展的R/S分析法用於研究河水流量的長期變化,藉之建造合適規模之水壩,衡量時間序列持續性的赫斯特指數便因其而得名。
金融市場大規模崩盤一直是備受關注的研究主題,由於無法被效率市場假說所解釋,因此學者轉而尋求建構在其它理論基礎上的方法作為研究工具,R/S分析法即為一例。Mandelbrot(1975)首次將R/S分析法運用於股票市場,並根據研究結果建構出碎形市場假說。近年來,也有越來越多學者將赫斯特指數用來衡量正向持續性的概念,套用到短期的趨勢預測上,並證實也有一定的預測能力。 本研究以R/S分析法衡量臺灣股票市場過去32年來的長記憶現象,透過文獻探討、分析比較計算過程的各項參數,建構出適當的局部赫斯特指數求算方式,並進一步探討其預測效力,特別是市場大規模崩盤的預警效果。最終,我們將時間窗長度設定為160天,計算過程的子序列長度範圍介於10到80天之間。將局部赫斯特指數之時間序列與臺灣發行量加權股價指數進行比較後,我們有以下幾點結論: 1.長期來看,台灣的局部赫斯特指數有下降趨勢,正向持續性逐漸削弱。 2.局部赫斯特指數的短期波動相當大,若單就某一特定時點之局部赫斯特指數進行預測,其解釋力不佳,移動平均具有較佳之解釋力。 3.局部赫斯特指數雖然具有一定之預警效果,但其訊號出現到實際市場崩盤之間存在一段約為半年的延遲時間,對於未來9個月的報酬有最佳之預測效力。 | zh_TW |
| dc.description.abstract | Harold E. Hurst, “Father of the Nile”, is a hydrologist who was devoted to the research of long-term persistency for river flow, and he developed Rescaled Range Analysis(R/S analysis), which is still an useful statistical tool today. The famous “Hurst exponent”, as a measurement of persistency, was named after him.
Sharp crashes in financial market, which cannot be explained by Efficient Market Hypothesis, is always one of the most popular topics, and researchers have used methods structured on other thesis as a tool to measure it. Mandelbrot(1975) was the one who brought R/S analysis to the stock market, and he constructed Fractal Market Hypothesis based on his research. Nowadays, more and more papers discussed about using Hurst exponent as a tool for short-term technical analysis to predict future price, and the predictive power has been proved. I used R/S analysis to measure the long memory in Taiwan stock market for the past 32 years, and constructed appropriate methodology to build the local Hurst exponent time series through paper review and discussing parameter settings. I tried to find out whether the local Hurst exponent, built with R/S analysis, is good at prediction or not. Finally, I decided to set 160 days as the time-window length, and use the subseries length ranges from 10 to 80 in the calculation. After comparing the local Hurst exponent time series with TAIEX, here are my conclusions: 1.According to the local Hurst exponent time series data I derived, the value of Hurst exponent keeps dropping over past 32 years at a slow pace, and the market seems to be more efficient. 2.The short-term volatility for local Hurst exponent is large, and it predicts badly if we only use a single point instead of a series pattern. Moreover, the moving average of the local Hurst exponent, which is less volatile in short term, has better predictive power. 3.Although the local Hurst exponent has predictive power, there is a time lag, about six months, between the warning signal and the time crash happened. As a result, the local Hurst exponent has the best predictive power toward nine-month yields. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:39:59Z (GMT). No. of bitstreams: 1 ntu-102-R00724036-1.pdf: 1239450 bytes, checksum: 5d4f21025b7ecb7171734bb00b2f7422 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii ABSTRACT iii 目錄 v 圖目錄 vi 表目錄 vii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究架構 2 第二章 市場概況與文獻回顧 4 第一節 臺灣股票市場概況 4 第二節 標準布朗運動與碎形布朗運動 4 第三節 效率市場假說 5 第四節 碎形市場假說 8 第五節 赫斯特指數 11 第六節 局部赫斯特指數 13 第三章 研究方法 15 第一節 常態檢定 15 第二節 赫斯特指數 15 第三節 週期循環與非週期性循環 18 第四節 局部赫斯特指數 20 第五節 迴歸分析 20 第四章 實證分析與結果 22 第一節 樣本選取 22 第二節 敘述統計量與常態檢定 22 第三節 持續性與週期 25 第四節 局部赫斯特指數 26 第五節 趨勢比較 30 第六節 預測效力 34 第五章 結論與建議 37 第一節 結論 37 第二節 研究建議與未來研究方向 38 參考文獻 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 持續性 | zh_TW |
| dc.subject | 長記憶 | zh_TW |
| dc.subject | 局部赫斯特指數 | zh_TW |
| dc.subject | R/S分析 | zh_TW |
| dc.subject | R/S analysis | en |
| dc.subject | local Hurst exponent | en |
| dc.subject | long memory | en |
| dc.subject | persistency | en |
| dc.title | 利用局部赫斯特指數預測國內股票市場 | zh_TW |
| dc.title | Predicting Taiwan Stock Market with Local Hurst Exponent | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 萬哲鈺(Jer-Yuh Wan),高一誠(Yi-Cheng Kao) | |
| dc.subject.keyword | R/S分析,局部赫斯特指數,長記憶,持續性, | zh_TW |
| dc.subject.keyword | R/S analysis,local Hurst exponent,long memory,persistency, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-15 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 國際企業學研究所 | zh_TW |
| 顯示於系所單位: | 國際企業學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
