Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62288
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorTong-Hong Linen
dc.contributor.author林佟鴻zh_TW
dc.date.accessioned2021-06-16T13:38:52Z-
dc.date.available2016-07-25
dc.date.copyright2013-07-25
dc.date.issued2013
dc.date.submitted2013-07-15
dc.identifier.citation[1] A. U. Bhobe and P. L. Perini, “An Overview of Smart Antenna Technology for Wireless Communication,” in Proc. IEEE Aerospace Conf., 2001, pp. 2/875-2/883.
[2] G. V. Tsoulos, “Smart Antennas for Mobile Communication Systems: Benefits and Challenges,” Electron. Commun. Eng. J., vol. 11, no. 2, pp. 84-94, Apr. 1999.
[3] A. Lozano, F. R. Farrokhi, and R. A. Valenzuela, “Lifting the Limits on High-Speed Wireless Data Access Using Antenna Arrays,” IEEE Commun. Mag., vol. 39, no. 9, pp. 156-162, Sep. 2001.
[4] A. Alexiou and M. Haardt, “Smart antenna technologies for future wireless systems: trends and challenges,” IEEE Commun. Mag., vol. 42, no. 9, pp. 90-97, Sep. 2004.
[5] M.-J. Ho, G. L. Stuber, and M. D. Austin, “Performance of switched-beam smart antennas for cellular radio systems,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 10-19, Feb. 1998.
[6] J. Blass, “The multidirectional antenna: A new approach to stacked beams,” in IRE Nat. Conv. Rec., vol.8, 1966, pp. 48-50.
[7] J. Nolen, “Synthesis of multiple beam networks for arbitrary illuminations,” Radio Div., Bendix Corporation, Baltimore, MD, 1965, Ph.D. dissertation.
[8] J. Butler and R. Lowe, “Beam-forming matrix simplifies design of electronically scanned antennas,” Electron. Design, pp. 170-173, Apr. 1961.
[9] H. Yang, and A. Shanghai, “A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface” IEEE Commun. Mag., vol. 43, no. 1, pp. 53-60, Jan. 2005.
[10] L. Yang and G. B. Giannaakis, “Ultra-wideband communications An Idea Whose Time Has Come,” IEEE Signal Processing Mag., vol. 21, no. 6, pp. 26-54, Nov. 2004.
[11] G. R. Aiello, and G. D. Rogerson, “Ultra-Wideband Wireless Systems” IEEE Microwave, vol. 4, no. 2, pp. 36-47, Jun. 2003.
[12] S. Ohmori, Y. Yamao, and N. Nakajima, “The Future Generations of Mobile Communications Based on Broadband Access Technologies,” IEEE Commun. Mag., vol. 38, no. 12, pp. 134-142, Dec. 2000.
[13] D.-H. Tuan, and P. Russer, “Signal Processing for Wideband Smart Antenna Array Applications,” IEEE Microwave, vol. 5, no. 1, pp. 57-67, Mar. 2004.
[14] K. Sheikh, D. Gesbert, D. Gore, and A. Paulraj, “Smart Antennas for Broadband Wireless Access Network,” IEEE Commun. Mag., vol. 37, no. 11, pp. 100-105, Nov. 1999.
[15] M. Gadže, D. Nogulić, and T. Blajić, “Smart Antenna Systems for Broadband Technologies,” in Int. Symp. ELMAR-2006 focused on Multimedia Signal Process. and Commun., Jun. 2006, pp. 171-174.
[16] K. Wincza, S. Gruszczynski and K. Sachse, “Broadband Planar Fully Integrated 8 × 8 Butler Matrix Using Coupled-Line Directional Couplers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2441-2446, Oct. 2011.
[17] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a Beam Switching/Steering Butler Matrix for Phased Array System” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 367-374, Feb. 2010.
[18] W.-Y. Chen, Y.-R. Hsieh, C.-C. Tsai, Y.-M. Chen, C.-C. Chan, S.-F. Chang, “A Compact Two-Dimensional Phased Array Using Grounded Coplanar-Waveguides Butler Matrices” in Proc. Eur. Microw. Conf., 2012, pp.747-750.
[19] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A New Planar Artificial Transmission Line and Its Applications to a Miniaturized Butler Matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
[20] M. Bona, L. Manholm, J. P. Starski, and B. Svensson, “Low-Loss Compact Butler Matrix for a Microstrip Antenna,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2069-2075, Sep. 2002.
[21] Y.-S. Jeong, and T.-W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 4, pp. 764-770, Apr. 2010.
[22] C.-J. Chen, and T.-H. Chu, “Design of a 60-GHz Substrate Integrated Waveguide Butler Matrix—A Systematic Approach,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 7, pp. 1724-1733, Jul. 2010.
[23] C. E. Patterson, W. T. Khan, G. E. Ponchak, G. S. May, and J. Papapolymerou, “A 60-GHz Active Receiving Switched-Beam Antenna Array With Integrated Butler Matrix and GaAs Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3599-3607, Nov. 2012.
[24] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler Matrix Using CPW Multilayer Technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 499-507, Jan. 2006.
[25] T. N. Kaifas, and J. N. Sahalos, “On the Design of a Single-Layer Wideband Butler Matrix for Switched-Beam UMTS System Applications,” IEEE Antennas Propagat. Mag., vol. 48, no. 6, pp. 193-204, Dec. 2006.
[26] T. Djerafi, and K. Wu,”A Low-Cost Wideband 77-GHz Planar Butler Matrix in SIW Technology,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4949-4954, Oct. 2012.
[27] M. Traii, M. Nedil, A. Gharsallah, and T. A. Denidni, “A Novel Wideband Butler Matrix Using Multi-Layer Technology,” Microw. Opt. Technol. Lett., vol. 51, no. 3, pp. 659-663 Mar. 2009.
[28] S. Gruszczynski and K. Wincza, “Broadband 4 x 4 Butler matrices as a connection of symmetrical multisection coupled-line 3-dB directional couplers and phase correction networks,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 1-9, Jan. 2009.
[29] H.-T. Nguyen, K.-S. Ang, G.-I. Ng, “Design of a broad-band novel Butler matrix,” in Proc. Asia-Pacific Microw. Conf., 2011, pp. 753-756.
[30] B. M. Schiffman, “A New Class of Broad-Band Microwave 90-Degree Phase Shifters,” IEEE Trans. Microw. Theory Tech., vol. 6, no. 2, pp. 232-237, Apr. 1958.
[31] H. Hayashi, D. A. Hitko, and C. G. Sodini, ”Four-Element Planar Butler Matrix Using Half-Wavelength Open Stubs,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 3, pp. 73-75, Mar. 2002.
[32] S. Z. Ibrahim, and M. E. Bialkowski, “Wideband Butler Matrix in Microstrip-Slot Technology,” in Proc. Asia-Pacific Microw. Conf., 2009, pp. 2104-2107.
[33] A. A. M. Ali, N. J. G. Fonseca, F. Coccetti, and H. Aubert, “Design and Implementation of Two-Layer Compact Wideband Butler Matrices in SIW Technology for Ku-Band Applications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 503-512, Feb. 2011.
[34] S. Y. Zheng, S. H. Yeung, W. S. Chan, and K. F. Man, “Broadband Butler Matrix Optimized Using Jumping Genes Evolutionary Algorithm,” in IEEE Int. Conf. Ind. Technolo., 2008, pp. 21-24.
[35] L. M. Abdelghani, T.A. Denidni, and M. Nedil, “Ultra-broadband 4x4 compact Butler matrix using multilayer directional couplers and phase shifters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012, pp. 1-3.
[36] M. Bozzi, A. Georgiadis, and K. Wu, “Review of Substrate-Integrated Waveguide Circuits and Antennas” IET Microw. Antennas & Propag., vol. 5, no. 8, pp. 909-920, Jun. 2011.
[37] J. D. Kraus, and R. J. Marhefka, Antennas for All Applications, 3rd Edition, McGraw-Hill, 2003.
[38] D. M. Pozar, Microwave Engineering, 3rd Edition New York: Wiley, 2005.
[39] J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Tran. Microw. Theory Tech., vol. 4, no. 4, pp. 246-252, Oct. 1956.
[40] R. E. Collin, Field Theory of Guided Waves, 2nd Edition New York: Wiley, 1990.
[41] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC Interconnect Transmission Line Characterization,” IEEE Trans. Compon., Hybrids, Manuf. Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62288-
dc.description.abstract由於時代的進步以及智慧型手機的出現,人們對於無線通訊系統的品質以及需求量有爆炸性的成長。因此智慧型天線被提出並應用於第一、二、三代無線通訊系統中來改善訊號的品質,並增加資料的傳輸速度。其中一種智慧型天線為波束切換式天線,它是利用一個經過特殊設計的電路來為天線陣列產生特定的饋入訊號,使天線的主波束可以指向特定的方向,並可藉由選擇電路不同的輸入端埠來改變主波束的方向。巴特勒矩陣便是其中一種可以達到此種目的的電路,且因為巴特勒矩陣的使用元件數較少、損耗較小、以及較便宜等優點,所以它很快的成為一種非常熱門的技術。然而在不久的將來,只傳遞聲音、文字、圖案已經無法滿足人們對於無線通訊的要求,大量的資訊如影片等資訊都必須列入考慮。在此種情況下,普通的第一、二、三代無線通訊系統已經無法負荷。所以寬頻的第四代無線通訊系統勢必成為未來重點發展的技術,也因此智慧型天線必須一同進化為寬頻的智慧型天線。有鑑於此,本論文主要致力於寬頻的四乘四巴特勒矩陣之設計。
首先,在研究過四乘四的巴特勒矩陣後,可以由研究結果了解到四乘四的巴特勒矩陣可以切割成兩個部份的電路分開設計,此兩電路分別為:方向耦合器以及中間電路。方向是耦合器主要是用來分波,而中間電路則是用來調整各個出口端之間的相位差來產生合適的訊號。因此對於寬頻的巴特勒矩陣而言最重要的部分在於做出寬頻的方向耦合器,以及寬頻的中間電路。
對於方向耦合器,本論文提出一種新的寬頻前向式耦合器。此種耦合器是利用週期性結構來設計。在奇偶模態的分析方面,此結構在兩種模態中都能達到寬頻的阻抗匹配;更重要的是,藉由調整結構的物理參數,可以使兩模態的相位差在一個寬頻帶內維持是一固定值。根據以上兩種特點,此種耦合器可以用來設計寬頻的前向式耦合器。此外此耦合器特意使用三層結構來達到縮小化,以及簡化中間電路。在分析方面,本論文提出了一簡單的等效電路來描述此新型耦合器在奇偶模態下的傳播特性,同時還以此等效電路來建立一套完整的設計流程。
中間電路是由45度相移器以及交叉耦合器組成,由於耦合器的特殊三層結構可以使此中間電路在設計上有大幅的簡化,此簡化對於整體大小的縮減有很大的幫助。對於中間電路,本論文藉由簡單的架構來使各個輸出端可以在一個寬頻帶內維持相等的相位差。本論文也建立了等效電路來描述中間電路,並以此等效電路來建立一套設計流程。藉由適當的合併本論文提出的寬頻前向式耦合器以及中間電路就可以得到一寬頻的四乘四巴特勒矩陣及其完整的設計流程,此電路大小僅有1.02 λg × 1.17 λg且在正負6度的誤差限制之下可以達到47%的比例頻寬。與文獻中同樣為寬頻的四乘四巴特勒矩陣設計比較起來,這種新型的結構不論是在大小或是在頻寬上都有較好的表現。
zh_TW
dc.description.abstractDue to the progress of time and the emergence of smart phones, the desire for wireless communication with high quality and high transmission rate increases explosively. Therefore, the concepts of smart antenna have been proposed and used in the first, second, and third generation wireless communication systems to improve the quality of the signals and increase the data transmission rate. One type of the smart antennas is called the switch-beam antenna. For this type of smart antennas, a beam-forming matrix is used to generate a series of feeding signals and they are sent to the antenna array to create a specific radiation pattern. The main beam of the radiation pattern can be directed to a particular direction. Besides, the main-beam direction can be switched to different directions by using different input port of the beam-forming matrix. The Butler matrix is one of the beam-forming matrices and it becomes a popular technique due to the small loss. Nevertheless, transmission of voices, messages, and figures can no longer satisfy people’s desire for wireless communication systems soon in the future. Much larger information such as videos has to be taken into consideration. Under this circumstance, the invention of broadband fourth generation systems will certainly play an important role in the future technologies. Therefore, the smart antennas should evolve into broadband smart antennas together and that’s the reason why this thesis dedicates to the design of broadband 4 × 4 Butler matrices.
The design of the 4 × 4 Butler matrix can be divided into two parts, 3-dB couplers and a middle network. The 3-dB couplers are used to split the power and the middle network is used to adjust the phase imbalances between output ports. Hence, the key points to design a broadband Butler matrix are broadband 3-dB couplers and a broadband middle network.
For the 3-dB couplers, a novel broadband forward-wave directional coupler is proposed in this thesis. It is designed based on the periodic structure. The broadband impedance matching of the even and odd modes can be achieved. Besides, the phase difference between two modes can keep at an almost constant value over a broad bandwidth. Because of these special properties, the proposed coupler can be expected to be a broadband coupler. Equivalent models are proposed to describe the propagating characteristics of both modes. Furthermore, a detailed design procedure is also proposed based on the equivalent models. Last but not least, this coupler is fabricated using a three-layer structure to miniaturize the size and simplify the design of the middle network.
The middle network is composed of two 45° phase shifters and a crossover. A middle network with a broadband constant phase difference between the phase shifter and the crossover is proposed. The equivalent models of the proposed middle network are also constructed and used to form a design procedure. A broadband Butler matrix and its design procedure can be obtained by combining the proposed broadband coupler and middle network. The size of the proposed broadband Butler matrix is 1.02 λg × 1.17 λg. Moreover, the errors of the phase imbalances between output ports are smaller than ±6° from 1.96 GHz to 3.15 GHz, and the corresponding fractional bandwidth is 47%. Compared with the broadband Butler matrix designs in previous works, the proposed Butler matrix can achieve a broader fractional bandwidth while using a more compact size.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:38:52Z (GMT). No. of bitstreams: 1
ntu-102-R00942015-1.pdf: 5852313 bytes, checksum: 621193d55229e5552209a21d9acbfdfb (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents國立台灣大學碩士學位論文口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
ACRONYMS xv
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Survey 5
1.3 Contributions 10
1.4 Organization of This Thesis 11
Chapter 2 Basic Theory and Design Concepts of 4 × 4 Butler Matrices 13
2.1 Basic Concepts of Antenna Arrays 13
2.2 Introduction of 4 × 4 Butler Matrices 15
2.3 Design Concepts of Broadband 4 × 4 Butler Matrices 21
Chapter 3 Broadband Forward-Wave Directional Coupler Design 23
3.1 Introduction and Parameters of Forward-Wave Directional Couplers 24
3.2 Even-Odd Mode Analysis of Symmetric Networks 25
3.2.1 Couplers Using Symmetric Coupled lines 32
3.2.2 Forward-Wave Directional Couplers 33
3.3 Analysis of Periodic Structures 36
3.4 Design Concepts 39
3.5 Proposed Unit Cell 39
3.5.1 Even- and Odd-Mode Equivalent Models 42
3.5.2 Propagation Characteristics 42
3.5.3 Symmetric Behavior 48
3.6 Broadband Forward-Wave Directional Coupler Design 51
3.6.1 Design Procedure 56
3.6.2 Practical Design Considerations 59
3.6.3 Simulated Results of Four-Port Scattering Parameters 63
3.7 Fabrication and Measured Results 66
3.7.1 3-dB Forward-Wave Directional Coupler 66
3.7.2 0-dB Forward-Wave Directional Coupler 74
3.8 Summary 78
Chapter 4 Broadband 4 × 4 Butler Matrix Design 81
4.1 Broadband Middle Network 82
4.1.1 Structure and Equivalent Models 84
4.1.2 Design Procedure 88
4.1.3 Comparisons 90
4.2 Broadband 4 × 4 Butler Matrix Design 94
4.3 Simulated and Measured Results 95
4.3.1 Scattering Parameters 96
4.3.2 Phase Imbalance between Output Ports 104
4.3.3 Calculated Array Factors 106
4.3.4 Radiation Patterns 108
4.4 Comparison and Discussion 116
4.5 Summary 118
Chapter 5 Conclusions 121
APPENDIX A 124
APPENDIX B 126
APPENDIX C 128
REFERENCE 130
PUBLICATION LIST 135
dc.language.isoen
dc.subject寬頻帶zh_TW
dc.subject週期性結構zh_TW
dc.subject智慧型天線zh_TW
dc.subject巴特勒矩陣zh_TW
dc.subject前向式耦合器zh_TW
dc.subjectsmart antennaen
dc.subjectperiodic structureen
dc.subjectforward-wave directional coupleren
dc.subjectbroadbanden
dc.subjectButler matrixen
dc.title寬頻四乘四巴特勒矩陣之設計zh_TW
dc.titleDesign of Broadband 4 × 4 Butler Matrixen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞北(Ruey-Beei Wu),馬自莊(Tzyh-Ghuang Ma),邱政男(Cheng-Nan Chiu),許森貴(Sen-Kuei Hsu)
dc.subject.keyword智慧型天線,巴特勒矩陣,寬頻帶,前向式耦合器,週期性結構,zh_TW
dc.subject.keywordsmart antenna,Butler matrix,broadband,forward-wave directional coupler,periodic structure,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2013-07-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved