請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊鏡堂 | |
| dc.contributor.author | Ching-Wen Hsu | en |
| dc.contributor.author | 徐靖雯 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:37:03Z | - |
| dc.date.available | 2013-07-26 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-16 | |
| dc.identifier.citation | Oecd health data 2012 - frequently requested data, http://www.oecd.org/els/healthpoliciesanddata/oecdhealthdata2012-frequentlyrequesteddata.htm, Accessed July 31, 2012.
Abbyad, P., Dangla, R., Alexandrou, A., and Baroud, C. N., 'Rails and anchors: Guiding and trapping droplet microreactors in two dimensions,' Lab on a Chip, 2010, 11, pp. 813-821. Anna, S. L., Bontoux, N., and Stone, H. A., 'Formation of dispersions using “flow focusing” in microchannels,' Applied Physics Letters, 2003, 82, pp. 364-366. Baret, J., 'Surfactants in droplet-based microfluidics,' Lab on a Chip, 2011, 12, pp. 422-433. Baroud, C. N., Gallaire, F., and Dangla, R., 'Dynamics of microfluidic droplets,' Lab on a Chip, 2010, 10, pp. 2032-2045. Berthier, J., and Silberzan, P., Microfluidics for biotechnology, Artech House Publishers, Massachusetts, 2009. Bremond, N., Thiam, A. R., and Bibette, J., 'Decompressing emulsion droplets favors coalescence,' Physical Review Letters, 2008, 100, pp. 024501. Bretherton, F. P., 'The motion of long bubbles in tubes,' Journal of Fluid Mechanics, 1961, 10, pp. 166-188. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J. M., Link, D. R., Perrimon, N., and Samuels, M. L., 'Droplet microfluidic technology for single-cell high-throughput screening,' Proceedings of the National Academy of Sciences, 2009, 106, pp. 14195-14200. Che, Z., Nguyen, N. T., and Wong, T. N., 'Hydrodynamically mediated breakup of droplets in microchannels,' Applied Physics Letters, 2011, 98, pp. 054102. Chen, K. H., Fang, W. F., Chen, Y. T., Fang, J. M., and Yang, J. T., 'Microflow synthesis of saccharide nucleoside diphosphate with cross-coupling reactions of monophosphate components,' Chemical Engineering Journal, 2012, 198–199, pp. 33-37. Chen, Y. T., Chen, K. H., Fang, W. F., Tsai, S. H., Fang, J. M., and Yang, J. T., 'Flash synthesis of carbohydrate derivatives in chaotic microreactors,' Chemical Engineering Journal, 2011, 174, pp. 421-424. Cornish, R., 'Flow in a pipe of rectangular cross-section,' Proceedings of the Royal Society of London. Series A, 1928, 120, pp. 691-700. Eddings, M. A., Johnson, M. A., and Gale, B. K., 'Determining the optimal pdms–pdms bonding technique for microfluidic devices,' Journal of Micromechanics and Microengineering, 2008, 18, pp. 067001. Fallah-Araghi, A., Baret, J. C., Ryckelynck, M., and Griffiths, A. D., 'A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution,' Lab on a Chip, 2012, 12, pp. 882-891. Fang, W. F., Hsu, M. H., Chen, Y. T., and Yang, J. T., 'Characterization of microfluidic mixing and reaction in microchannels via analysis of cross-sectional patterns,' Biomicrofluidics, 2011, 5, pp. 014111. Fidalgo, L. M., Abell, C., and Huck, W. T. S., 'Surface-induced droplet fusion in microfluidic devices,' Lab on a Chip, 2007, 7, pp. 984-986. Fu, J., Mao, P., and Han, J., 'Nanofilter array chip for fast gel-free biomolecule separation,' Applied Physics Letters, 2005, 87, pp. 263902. Garstecki, P., Fuerstman, M. J., Stone, H. A., and Whitesides, G. M., 'Formation of droplets and bubbles in a microfluidic t-junction—scaling and mechanism of break-up,' Lab on a Chip, 2006, 6, pp. 437-446. Ghaini, A., Mescher, A., and Agar, D. W., 'Hydrodynamic studies of liquid–liquid slug flows in circular microchannels,' Chemical Engineering Science, 2011, 66, pp. 1168-1178. Graham, M. D., 'Fluid dynamics of dissolved polymer molecules in confined geometries,' Annual Review of Fluid Mechanics, 2011, 43, pp. 273-298. Guo, M. T., Rotem, A., Heyman, J. A., and Weitz, D. A., 'Droplet microfluidics for high-throughput biological assays,' Lab on a Chip, 2012, 12, pp. 2146-2155. Hecht, C., van der Schoot, N., Kronemayer, H., Wlokas, I., Lindken, R., and Schulz, C., 'Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry,' Experiments in fluids, 2012, 52, pp. 743-748. Hodges, S., Jensen, O., and Rallison, J., 'The motion of a viscous drop through a cylindrical tube,' Journal of Fluid Mechanics, 2004, 501, pp. 279-301. Hsu, M. H., Fang, W. F., Lai, Y. H., Yang, J. T., Tsai, T. L., and Shieh, D. B., 'Enhanced mobile hybridization of gold nanoparticles decorated with oligonucleotide in microchannel devices,' Lab on a Chip, 2010, 10, pp. 2583-2587. Huang, L. R., Tegenfeldt, J. O., Kraeft, J. J., Sturm, J. C., Austin, R. H., and Cox, E. C., 'A DNA prism for high-speed continuous fractionation of large DNA molecules,' Nature Biotechnology, 2002, 20, pp. 1048-1051. Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., and Edel, J. B., 'Microdroplets: A sea of applications?,' Lab on a Chip, 2008, 8, pp. 1244-1254. Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R., and Lee, L. P., 'Continuous perfusion microfluidic cell culture array for high‐throughput cell‐based assays,' Biotechnology and Bioengineering, 2005, 89, pp. 1-8. Jendrejack, R. M., Schwartz, D. C., de Pablo, J. J., and Graham, M. D., 'Shear-induced migration in flowing polymer solutions: Simulation of long-chain DNA in microchannels,' The Journal of chemical physics, 2004, 120, pp. 2513. Jendrejack, R. M., Schwartz, D. C., Graham, M. D., and de Pablo, J. J., 'Effect of confinement on DNA dynamics in microfluidic devices,' The Journal of chemical physics, 2003, 119, pp. 1165. Kurup, G., and Basu, A. S., 'Shape dependent laplace vortices in deformed liquid-liquid slug flow,' Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011, Kurup, G., and Basu, A. S., 'Field-free particle focusing in microfluidic plugs,' Biomicrofluidics, 2012, 6, pp. 022008. Kurup, G. K., and Basu, A. S., 'Tensiophoresis: Migration and sorting of droplets in an interfacial tension gradient,' Micro Total Analysis Systems (MicroTAS), October 2011, Seattle WA. Kurup, G. K., and Basu, A. S., 'Passice, label-free droplet sorting by chemical composision using tensiphoresis,' Micro Total Analysis Systems (MicroTAS), October 2012, Okinawa JPN. Lai, A., Bremond, N., and Stone, H. A., 'Separation-driven coalescence of droplets: An analytical criterion for the approach to contact,' Journal of Fluid Mechanics, 2009, 632, pp. 97-107. Lee, G. B., Chen, S. H., Huang, G. R., Sung, W. C., and Lin, Y. H., 'Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,' Sensors and Actuators B: Chemical, 2001, 75, pp. 142-148. Lee, K., Ahn, B., and Oh, K. W., 'Hydrodynamic focusing based particle filtration using an island structure with built-in valves,' Biochip Jornal, 2009, 3, pp. 275-280. Legendre, L. A., Bienvenue, J. M., Roper, M. G., Ferrance, J. P., and Landers, J. P., 'A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples,' Analytical Chemistry, 2006, 78, pp. 1444-1451. Li, W., Nie, Z., Zhang, H., Paquet, C., Seo, M., Garstecki, P., and Kumacheva, E., 'Screening of the effect of surface energy of microchannels on microfluidic emulsification,' Langmuir, 2007, 23, pp. 8010-8014. Lima, R., Wada, S., Tsubota, K.-i., and Yamaguchi, T., 'Confocal micro-piv measurements of three-dimensional profiles of cell suspension flow in a square microchannel,' Measurement Science and Technology, 2006, 17, pp. 797. Link, D., Anna, S. L., Weitz, D. A., and Stone, H., 'Geometrically mediated breakup of drops in microfluidic devices,' Physical Review Letters, 2004, 92, pp. 54503. Liu, Y., Jun, Y., and Steinberg, V., 'Longest relaxation times of double-stranded and single-stranded DNA,' Macromolecules, 2007, 40, pp. 2172-2176. Menetrier-Deremble, L., and Tabeling, P., 'Droplet breakup in microfluidic junctions of arbitrary angles,' Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74, pp. 035303. Ma, X., and Arce, G. R., Computational lithography, John Wiley & Sons, Inc., New Jersey, 2010. Maenaka, H., Yamada, M., Yasuda, M., and Seki, M., 'Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels,' Langmuir, 2008, 24, pp. 4405-4410. Mazutis, L., Baret, J.-C., and Griffiths, A. D., 'A fast and efficient microfluidic system for highly selective one-to-one droplet fusion,' Lab on a Chip, 2009, 9, pp. 2665-2672. Mazutis, L., and Griffiths, A. D., 'Preparation of monodisperse emulsions by hydrodynamic size fractionation,' Applied Physics Letters, 2009, 95, pp. 204103. Nguyen, N. T., and Wu, Z., 'Micromixers—a review,' Journal of Micromechanics and Microengineering, 2004, 15, pp. R1-R16. Nie, Z., Seo, M. S., Xu, S., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P., and Stone, H. A., 'Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids,' Microfluidics and Nanofluidics, 2008, 5, pp. 585-594. Nisisako, T., Okushima, S., and Torii, T., 'Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system,' Soft Matter, 2005, 1, pp. 23-27. Oh, K. W., Lee, K., Ahn, B., and Furlani, E. P., 'Design of pressure-driven microfluidic networks using electric circuit analogy,' Lab on a Chip, 2012, 12, pp. 515-545. Okushima, S., Nisisako, T., Torii, T., and Higuchi, T., 'Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,' Langmuir, 2004, 20, pp. 9905-9908. Ottino, J., Muzzio, F., Tjahjadi, M., Franjione, J., Jana, S., and Kusch, H., 'Chaos, symmetry, and self-similarity: Exploiting order and disorder in mixing processes,' Science, 1992, 257, pp. 754-760. Pamme, N., 'Continuous flow separations in microfluidic devices,' Lab on a Chip, 2007, 7, pp. 1644-1659. Park, J. S., Choi, C. K., and Kihm, K. D., 'Optically sliced micro-piv using confocal laser scanning microscopy (clsm),' Experiments in fluids, 2004, 37, pp. 105-119. Prakash, M., and Gershenfeld, N., 'Microfluidic bubble logic,' Science, 2007, 315, pp. 832-835. Sambrook, J., and Russell, D. W., Isolation of high-molecular-weight DNA from mammalian cells using formamide, Cold Spring Harbor Laboratory Press, New York, 2006. Santiago, J., Wereley, S., Meinhart, C., Beebe, D., and Adrian, R., 'A particle image velocimetry system for microfluidics,' Experiments in fluids, 1998, 25, pp. 316-319. Semwogerere, D., and Weeks, E. R., Confocal microscopy, Taylor and Francis, London, 2005. Seo, M., Paquet, C., Nie, Z., Xu, S., and Kumacheva, E., 'Microfluidic consecutive flow-focusing droplet generators,' Soft Matter, 2007, 3, pp. 986-992. Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J., and Ismagilov, R. F., 'Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,' Applied Physics Letters, 2003, 83, pp. 4664-4666. Song, H., Chen, D. L., and Ismagilov, R. F., 'Reactions in droplets in microfluidic channels,' Angewandte Chemie International Edition, 2006, 45, pp. 7336-7356. Squires, D. A., 'Explaining high health care spending in the united states: An international comparison of supply, utilization, prices, and quality,' The Commonwealth Fund, 2012, 10, pp. 1-14. Stein, D., van der Heyden, F. H., Koopmans, W. J., and Dekker, C., 'Pressure-driven transport of confined DNA polymers in fluidic channels,' Proceedings of the National Academy of Sciences, 2006, 103, pp. 15853-15858. Strey, H. H., Podgornik, R., Rau, D. C., and Parsegian, V. A., 'Dna-dna interactions,' Current Opinion in Structural Biology, 1998, 8, pp. 309-313. Takeuchi, S., Garstecki, P., Weibel, D. B., and Whitesides, G. M., 'An axisymmetric flow‐focusing microfluidic device,' Advanced Materials, 2005, 17, pp. 1067-1072. Tan, Y. C., Ho, Y. L., and Lee, A. P., 'Droplet coalescence by geometrically mediated flow in microfluidic channels,' Microfluidics and Nanofluidics, 2007, 3, pp. 495-499. Tan, Y. C., Ho, Y. L., and Lee, A. P., 'Microfluidic sorting of droplets by size,' Microfluidics and Nanofluidics, 2008, 4, pp. 343-348. Thorsen, T., Roberts, R. W., Arnold, F. H., and Quake, S. R., 'Dynamic pattern formation in a vesicle-generating microfluidic device,' Physical Review Letters, 2001, 86, pp. 4163-4166. Tice, J. D., Song, H., Lyon, A. D., and Ismagilov, R. F., 'Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers,' Langmuir, 2003, 19, pp. 9127-9133. Tinland, B., Pluen, A., Sturm, J., and Weill, G., 'Persistence length of single-stranded DNA,' Macromolecules, 1997, 30, pp. 5763-5765. Tung, K. Y., Li, C. C., and Yang, J. T., 'Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer,' Microfluidics and Nanofluidics, 2009, 7, pp. 545-557. Varghese, S. S., Zhu, Y., Davis, T. J., and Trowell, S. C., 'Fret for lab-on-a-chip devices—current trends and future prospects,' Lab on a Chip, 2010, 10, pp. 1355-1364. Wang, X., Liu, L., Wang, W., Pu, Q., Guo, G., Dasgupta, P. K., and Liu, S., 'Resolving DNA in free solution,' TrAC Trends in Analytical Chemistry, 2012, 687, pp. 12-27. Weng, X., Jiang, H., and Li, D., 'Microfluidic DNA hybridization assays,' Microfluidics and Nanofluidics, 2011, pp. 1-17. Whitesides, G. M., 'The origins and the future of microfluidics,' Nature, 2006, 442, pp. 368-373. Wu, D., Qin, J., and Lin, B., 'Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for eof inhibition and biopolymers separation,' Lab on a Chip, 2007, 7, pp. 1490-1496. Yamada, M., Nakashima, M., and Seki, M., 'Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,' Analytical Chemistry, 2004, 76, pp. 5465-5471. Zhang, J., Coulston, R. J., Jones, S. T., Geng, J., Scherman, O. A., and Abell, C., 'One-step fabrication of supramolecular microcapsules from microfluidic droplets,' Science, 2012, 335, pp. 690-694. Zheng, B., Joshua, D., and Ismagilov, R. F., 'Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays,' Analytical Chemistry, 2004, 76, pp. 4977-4982. 方偉峰,2009,微生化反應器之研發與物種速暨濃度場之同步診測,國立清華大學動力機械工程學系博士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62259 | - |
| dc.description.abstract | 本研究之主旨為利用界面活性劑的構想研發被動式DNA濃縮技術,並用以開發DNA濃縮暨分離之液珠式微流體晶片,在無電、磁等外力場輔助下,於數秒內將晶片內的DNA濃縮、將高濃度區段分離並取出。本研究亦詳細探討DNA濃縮的機制與各種可能影響濃縮成果的狀況。
研發概念係將原為親水性的寡核苷酸 (oligonucleotide,或稱single-stranded DNA;ssDNA) 修飾上親油性的螢光分子TAMRA,並將修飾過後的ssDNA溶液通入液珠式流道中,形成離散的液珠群;液珠中之ssDNA將受親油端之極性,自身比重與流場剪應力的合併作用下聚集於液珠末端,而達成無外力場、無結構輔助下,於自由流動的液珠內濃縮ssDNA之目的。為收集液珠末端的高濃度ssDNA,本研究藉十字型流道、以對稱的剪切力分割母液珠,形成含低濃度ssDNA的前端液珠 (front droplet),與尺寸較小而高濃度的尾端液珠 (rear droplet)。爾後再採背壓 (back pressure) 控制,或表面能量井控制法,使尺寸不一的前、尾端液珠分別進入不同流道,而達到分離與收集高濃度ssDNA 之目的。目前液珠移動速度為5.96 mm/s 時,可濃縮2.5 倍。ssDNA上所修飾之分子親油性越強、液珠移動速度越快、所使用之油體與ssDNA溶液黏性差異越大,皆會使濃縮成效會提高。由於ssDNA濃度越高,其所釋出的光訊號則越強,此一設計除了濃縮便利的優點外,還可提升DNA檢測極限至新低濃度。未來可應用於DNA雜交檢測,迅速將特定檢測訊號濃縮取出。此晶片除了流體的輸入、不需外加任何驅動裝置,相當容易與其他生醫檢測晶片整合,進行多功能處理與分析。期許此元件可廣泛應用於其他生醫檢體,例如蛋白質或細菌等的濃縮、反應及檢測,提供新世代的人們一個快速的即時檢測系統。 | zh_TW |
| dc.description.abstract | The condensed DNA reveals several interesting properties and plays an essential role in the fields of biology, biophysics and biochemistry. However, the investigation of enrichment of DNA in droplet-based biomedical chip is scarce. To fully utilize the advantages droplet-based microfluidic offer and to further complete the function of biomedical chip, a new method to concentrate DNA on-chip is demanded. This thesis proposes a novel droplet-based microfluidic device to enrich and to separate hydrophobically functionalized single-stranded DNA (ssDNA) in free-flow microdroplets without complicated design and fabrication, and without external field. The enrichment ability depends on several factors including the hydrophobicity of the fluorescent label, oil viscosity and flow rate. The mechanism of the enrichment process is also detail investigated and analyzed by micro particle image velocimetry (micro-PIV).
A droplet called mother droplet is generated and undergoes enrichment in which the ssDNA aggregates at the end of the droplet through a combined effect of hydrodynamic repulsion, ssDNA specific gravity and affinity attraction. On passing through the cross junction, the mother droplet was divided into a front droplet and a rear droplet. The rear droplets are smaller but contain greater ssDNA concentration. Based on a correlation between pressure resistance, surface energy and droplet size, the rear droplets are separated into different channels and collected to obtain a solution with highly concentrated ssDNA. The fluorescent intensity of droplets is analyzed and shows that the rear droplet is approximately 3 times the original concentration. Three vortices are found after performing the micro-PIV experiment. It is the interaction of ssDNA specific gravity with the recirculating microvortices that concentrate ssDNA in the rear of the plug. The hydrophobic label greatly enhances the performance since it reduces the mobility of the ssDNA. This thesis realized ssDNA enrichment and separation in free-flow microdroplets without additional medium or external addition. This is a novel approach to purify and extract ssDNA from a dilute solution, and to improve the detection limit of dilute DNA solution during hybridization. Hence it is advantageous to biomedical chips. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:37:03Z (GMT). No. of bitstreams: 1 ntu-102-R00522107-1.pdf: 3872401 bytes, checksum: 8b58e0789df169b46f38f0d7ade9d1c3 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 誌謝 iii 目錄 v 圖表目錄 vii 符號說明 x 第一章 前言 1 1-1 研究背景 1 第二章 文獻回顧 4 2-1 微流體系統 (microfluidics system) 4 2-2 連續式流體 (continuous flow) 的限制 6 2-3 液珠式微流體 (droplet-based microfluidics) 7 2-3.1 液珠生成 (droplet generation) 8 2-3.2 液珠式微流體的的內流場 12 2-3.3 界面活性劑對液珠的影響 15 2-3.4 液珠的混合 20 2-3.5 液珠控制 21 2-4 液珠式微流體系統之應用 28 2-5 DNA檢測晶片 29 2-5.1 DNA彈性程度與位移行為 30 2-5.2 應用於DNA分析檢測之微流體晶片 31 2-6 文獻回顧分析 32 第三章 研究方法 34 3-1 應用於DNA雜交、濃縮與分離之液珠式微反應器 35 3-1.1 元件設計概念 35 3-1.2 元件材料與製程 38 3-2 雷射螢光共軛焦顯微術介紹 42 3-2.1 螢光顯微鏡基本原理 42 3-2.2 共軛焦顯微術介紹 43 3-2.3 雷射掃描式共軛焦顯微鏡 (Laser Scanning Confocal Microscope) 45 3-3 微粒子影像速度場量測技術介紹 47 3-4 實驗流程與儀器配置 48 3-4.1 ssDNA濃縮暨分離實驗 48 3-4.2 粒子影像速度量測技術實驗架構 49 3-4.3 實驗分析方法 51 第四章 實驗成果與原理探討 52 4-1 ssDNA濃縮與分離成果 52 4-1.1 壓力控制法 52 4-1.2 表面能控制法 58 4-2 ssDNA濃縮原理探討 61 4-2.1 螢光分子的親油性對聚集的影響 61 4-2.2 液珠界面張力對ssDNA聚集的影響 62 4-2.3 ssDNA聚集原因推論 63 4-2.4 以微粒子影像速度場量測技術 (micro-PIV) 拍攝液珠內的流場 65 第五章 結論 69 第六章 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 液珠式微流體 | zh_TW |
| dc.subject | 自由流動微液珠 | zh_TW |
| dc.subject | 分離 | zh_TW |
| dc.subject | 濃縮 | zh_TW |
| dc.subject | 晶片 | zh_TW |
| dc.subject | DNA | zh_TW |
| dc.subject | free-flow microdroplets | en |
| dc.subject | DNA enrichment | en |
| dc.subject | separation | en |
| dc.subject | droplet-based microfluidic device | en |
| dc.title | DNA濃縮暨分離之液珠式微流體晶片 | zh_TW |
| dc.title | A Droplet-Based Micro Chip for DNA Enrichment and Separation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊瑞珍,謝曉星,許佳賢,廖英志 | |
| dc.subject.keyword | DNA,濃縮,分離,液珠式微流體,晶片,自由流動微液珠, | zh_TW |
| dc.subject.keyword | DNA enrichment,separation,droplet-based microfluidic device,free-flow microdroplets, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
