Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇和平
dc.contributor.authorChing-Ming Chouen
dc.contributor.author周景銘zh_TW
dc.date.accessioned2021-06-16T13:36:14Z-
dc.date.available2015-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-17
dc.identifier.citation中華民國國家標準CNS 5033。2005。食品中水分之檢驗方法。經濟部標準檢驗局。
王政騰。1991。鹹雞蛋蛋黃顆粒化或膠化過程低密度脂蛋白之理化性質。中國農業化學會誌。29: 415-426。臺灣。
仝其根、寧靜、徐藝青、周敏和江懷璽。2008。鹹蛋黃快速醃漬方法的研究。食品科學。29: 155-157。中國。
吳春利。2001。畜牧學實習(飼料分析)。合記圖書出版社。臺北。臺灣。
林慶文。2000。蛋之化學與利用,三版。華香園出版社。臺北。臺灣。
范勁松、閆金姣、文聲揚、李斌、李銳和馬美湖。2011。不同金屬離子對快速醃製鹹蛋黃物理特性的影響。食品科技。36: 119-122。中國。
張勝善。1999。蛋品加工學,二版。華香園出版社。臺北。臺灣。
張耀基。1995。以快速醃漬法製造鹹雞蛋黃之醃製條件及機制之探討。國立臺灣大學食品科技研究所。碩士論文。
連莊平。2009。利用多醣膠體及不同來源之食用油脂供開發機能性低脂蛋黃醬之研究。國立臺灣大學動物科學技術學系。碩士論文。
陳明造。1990。蛋品加工理論與應用。藝軒圖書出版社。臺北。臺灣。
陳姿利。2011。乳酸菌發酵香腸菌相與理化特性之研究。國立臺灣大學動物科學技術學系。碩士論文。
陳家全、李家維和楊瑞森。1991。生物電子顯微鏡學。行政院國家科學委員會精密儀器發展中心編印。臺北。臺灣。
彭輝、林捷、肖丹華、黃娟和鄭華。2011。鹹蛋黃成熟機制及品質影響因素研究進展。食品研究與發展。32: 181-184。中國。
曾國軒。1994。以生鮮蛋黃醃製鹹蛋黃之研究。國立臺灣大學食品科技研究所。碩士論文。
黃英豪。2002。醃製期間鹹鴨蛋理化學性狀變化之研究。國立臺灣大學動物科學技術學系。博士論文。
劉國慶、江力、錢曉勇和呂常慶。2008。鹹鴨蛋快速醃製工藝優化研究。食品科學。29: 234-237。中國。
蔣丙煌和鍾美玉。1986。由新鮮蛋黃製造鹹蛋黃可行性之探討。食品科學。13: 1-9。臺灣。
賴坤明、江伯源、紀學斌和柯文慶。1998。蛋白及蛋白置換物對鹽漬殼蛋蛋黃形成性之影響。食品科學。25: 456-463。臺灣。
Aguilar, J. M., F. Codobes, A. Jerez and A. Guerrero. 2007. Influence of high pressure processing on the linear viscoelastic properties of egg yolk dispersions. Rheol. Acta. 46: 731-740.
Allerton, S. E. and G. E. Perlmann. 1965. Chemical characterization of the phosphoprotein, phosvitin. J. Biol. Chem. 240: 3892-3898.
Anton, M. and G. Gandemer. 1999. Effect of pH on interface composition and on quality of oil-in-water emulsions made with hen egg yolk. Colloids Surf., B. 12: 351-358.
Anton, M., M. Le Denmat, V. Beaumal and P. Pilet. 2001. Filler effects of oil droplets on the rheology of heat-set emulsion gels prepared with egg yolk and egg yolk fractions. Colloids Surf., B. 21: 137-147.
Anton, M., V. Martinet, M. Dalgalarrondo, V. Beaumal, E. David-Briand and H. Rabesona. 2003. Chemical and structural characterization of low-density lipoproteins purified from hen egg yolk. Food Chem. 83: 175-183.
AOAC. 2000. Official Method of Analysis, 17th ed. Association of Official American Chemists, Washington, DC., U.S.A.
Bellairs, R., M. Harkness and R. D. Harkness. 1963. The vitelline membrane of the hen’s egg: a chemical and electron microscopical study. J. Ultrastruct. Res. 8: 339-359.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Campbell, L., V. Raikos and S. R. Euston. 2003. Modification of functional properties of egg-white proteins. Nahrung. 47: 369-376.
Castellani, O., C. Guerin-Dubiard, E. Davia-Briand and M. Anton. 2004. Influence of physicochemical conditions and technological treatments on the iron binding capacity of egg yolk phosvitin. Food Chem. 85: 569-577.
Causeret, D., E. Matringe and D. Lorient. 1991. Ionic strength and pH effects on composition and microstructure of yolk granules. J. Food Sci. 56: 1532-1536.
Causeret, D., E. Matringe and D. Lorient. 1992. Mineral cations affect microstructure of egg yolk granules. J. Food Sci. 57: 1323-1326.
Chang, C. H., W. D. Powrie and O. Fennema. 1977. Microstructure of egg yolk. J. Food Sci. 42: 1193-1200.
Chi, S. P. and K. H. Tseng. 1998. Physicochemical properties of salted pickled yolks from duck and chicken eggs. J. Food Sci. 63: 27-30.
Chung, S. L. and L. K. Ferrier. 1992. pH and sodium chloride effects on emulsifying properties of egg yolk phosvitin. J. Food Sci. 57: 40-42.
Chung, W. H., K. M. Lai and K. C. Hsu. 2010. Comparative study on histological structures of the vitelline membrane of hen and duck egg observed by cryo-scanning electron microscopy. J. Agric. Food Chem. 58: 1794-1799.
Clark, A. H., G. M. Kavanagh and S. B. Ross-Murphy. 2001. Globular protein gelation-theory and experiment. Food Hydrocolloid. 15: 383-400.
Cordobes, F., P. Partal and A. Guerrero. 2004. Rheology and microstructure of heat-inducer egg yolk gels. Rheol. Acta. 43: 184-195.
Croguennec, T., F. Nau and G. Brule. 2002. Influence of pH and salts on egg white gelation. J. Food Sci. 67: 608-614.
Delgado-Vargas, F., A. R. Jimenez and O. Paredes-Lopez. 2000. Natural pigments: carotenoids, anthocyanins, and betalains-characteristica, biosynthesis, processing, and stability. Crit. Rev. Nutr. 40: 173-289.
Donovan, J. W., C. J. Mapes, J. G. Davis and J. A. Garibaldi. 1975. A differential scanning calorimetric study of the stability of egg white to heat denaturation. J. Sci. Food Agric. 26: 73-83.
Fletcher, D. L., W. M. Britton and J. A. A. Cason. 1984. A comparison of various procedures for determining total yolk lipid content. Poult. Sci. 63: 1759-1763.
Gao, X. and S. Yuan. 2010. High density lipoproteins-based therapies for cardiovascular disease. J. Cardiovsc. Dis. Res. 1: 99-103.
Gilbert, A. B. 1971. The egg: it’s physical and chemical aspects. Academic Press, London, U.K.
Gosal, W. S. and B. R. Murphy. 2000. Globular protein gelation. Curr. Opin. Colloid Interface Sci. 5: 188-194.
Guerrero, A., J. Carmona, I, Martinez and P. Partal. 2004. Effect of pH and added electrolyte on the thermal-induced transitions of egg yolk. Rheol. Acta. 43: 539-549.
Handa, A., K. Takahashi, N. Kuroda and G. W. Froning. 1998. Heat-induced egg white gels as affected by pH. J. Food Sci. 63: 403-407.
Hickson, D. W., C. W. Dill, R. G. Morgan, V. E. Sweat, D. A. Suter and Z. L. Carpenter. 1982. Rheological properties of two heat-induced protein gels. J. Food Sci. 47: 783-785.
Hinton, C. F., J. L. Fry and R. H. Harms. 1974. Influence of xanthophyll-free pullet grower diet on subsequent egg yolk pigmentation. Poult. Sci. 53: 223-226.
Hsu, K. C., W. H. Chung and K. M. Lai. 2009. Histological structures of native and cooked yolks from duck egg observed by SEM and cryo-SEM. J. Agric. Food Chem. 57: 4218-4223.
Huopalahti, R., R. Lopez-Fandino, M. Anton and R. Schade. 2007. Bioactive egg compounds. Verlag Berlin Heidelberg, New York, NY., U.S.A.
Ji, L., H. Liu, C. Cao, P. Liu, H. Wang and H. N. Wang. 2013. Chemical and structural changes in preserved white egg during pickled by vacuum technology. Food Sci. Technol. Int. 0: 1-9.
Johnson, T. M. and M. E. Zabik. 1981. Gelation properties of albumen proteins, singly and in combination. Poult. Sci. 60: 2071-2083.
Kaewmanee, T., S. Benjakul and W. Visessanguan. 2009a. Protein hydrolysates of salted duck egg whites as a substitute of phosphate and its effect on quality of pacific white shrimp (Litopenaeus Vannamei). J. Food Sci. 74: 351-361.
Kaewmanee, T., S. Benjakul and W. Visessanguan. 2009b. Changes in chemical composition, physical properties and microstructure of duck egg as influenced by salting. Food Chem. 112: 560-569.
Kaewmanee, T., S. Benjakul and W. Visessanguan. 2009c. Effect of salting processes on chemical composition, textural properties and microstructure of duck egg. J. Sci. Food Agric. 89: 625-633.
Kaewmanee, T., S. Benjakul and W. Visessanguan. 2011a. Effects of salting processes and time on the chemical composition, textural properties and microstructure of cooked duck egg. J. Food Sci. 76: 139-147.
Kaewmanee, T., S. Benjakul and W. Visessanguan. 2011b. Effect of NaCl on thermal aggregation of egg white proteins from duck egg. Food chem. 125: 706-712.
Kaewmanee, T., S. Benjakul and W. Visessanguan. 2011c. Effect of acetic acid and commercial protease pretreatment on salting and characteristics of salted duck egg. Food Bioprocess Tech. 5: 1502-1510.
Kovacs-Nolan, J., M. Phillips and Y. Mine. 2005. Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 53: 8421-8431.
Lai, K. M., S. P. Chi and W. C. Ko. 1999. Changes in yolks states of duck egg during long-term brining. J. Agric. Food Chem. 47: 733-736.
Lai, K. M., W. C. Ko and T. H. Lai. 1997. Effect of NaCl penetration rate on the granulation and oil-off of the yolk of salted duck egg. Food Sci. Technol. Int. 3: 269-273.
Lai, K. M., W. H. Chang, C. L. Jao and K. C. Hsu. 2010. Oil exudation and histological structures of duck egg yolks during brining. Poult. Sci. 89: 738-744.
Lawless, H. T. and H. Heymann. 1999. Sensory evaluation of food: principles and practices. Kluwer Academic/Plenum, New York, NY., U.S.A.
Le Denmat, M., M. Anton and G. Gandemer. 1999. Protein denaturation and emulsifying properties of plasma and granules of egg yolk as related to heat treatment. J. Food Sci. 64: 194-197.
Le Denmat, M., M. Anton and V, Beaumal. 2000. Characterisation of emulsion properties and of interface composition in O/W emulsions prepared with hen egg yolk, plasma and granules. Food Hydrocolloid. 14: 539-549.
Lewis, S. 1991. Egg white proteins. Comp. Biochem. Physiol. 100B: 1-9.
Liu, J. R., M. J. Chen and C. W. Lin. 2002. Characterization of polysaccharide and volatile compounds produced by kefir grains grown in soymilk. J. Food Sci. 67: 104-108.
Mann, K. 2008. Proteomic analysis of the chicken egg vitelline membrane. Preteomics. 8: 2322-2332.
Martinez, O., J. Salmeron, M. D. Guillen and C. Casas. 2004. Texture profile analysis of meat products treated with commercial liquid smoke flavourings. Food Control. 15: 457-461.
Mine, Y. 1995. Recent advances in the understanding of egg white protein functionality. Trends Food Sci. Tech. 6: 225-232.
Mineki, M. and M. Kobayashi. 1997. Microstructure of yolk from fresh eggs by improved method. J. Food Sci. 62: 757-761.
Nakano, T., N. I. Ikawa and L. Ozimek. 2003. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 82: 510-514.
Nishinari, K., H. B. Zhang and S. Ikeda. 2000. Hydrocolloid gels of polysaccharides and proteins. Curr. Opin. Colloid Interface Sci. 5: 195-201.
Parkinson, T. L. 1966. The chemical composition of eggs. J. Sci. Food Agric. 17: 101-111.
Plancken, I. V., A. V. Loey and M. E. Hendrickx. 2007. Foaming properties of egg white proteins affected by heat or high pressure treatment. J. Food Eng. 78: 1410-1426.
Powrie, W. D. and S. Nakai. 1985. Characteristics of edible fluids of animal origin: Eggs. In O. R, Fennema (Ed.), Food chemistry (pp. 829-855). New York: Marcel Dekker.
Raikos, V., L. Campbell and S. R. Euston. 2007. Rheology and texture of hen’s egg protein heat-set gels as affected by pH and the addition of sugar and/or salt. Food Hydrocolloid. 21: 237-244.
Raikos, V., R. Hansen, L. Campbell and S. Euston. 2006. Separated and identification of hen egg protein isoforms using SDS-PAGE and 2D gel electrophoresis with MALDI-TOF mass spectrometry. Food Chem. 99: 702-710.
Samontha, A., C. Nipattamanon, J. Shiowatana and A. Siripinyanond. 2008. Toward better understanding of salt-induced hen egg white protein aggregation using field-flow fractionation. J. Agric. Food Chem. 56: 8809-8814.
Santos-Bocanegra, E., X. Ospina-Osorio and E. O. Oviedo-Rondon. 2004. Evaluation of xanthophylls extracted from Tagetes erectus (marigold flower) and Capsicum Sp. (red pepper paprika) as a pigment for egg-yolks compare with synthetic pigments. Int. J. Poult. Sci. 3: 685-689.
Schultz, J. M., H. E. Snyder and R. H. Forsythe. 1968. Co-dried carbohydrates effect on the performance of egg yolk solids. J. Food Sci. 33: 507-513.
Sousa, R. C. S., J. S. R. Coimbra, E. E. G. Rojas, L. A. Minim, F. C. Oliveira and V. P. R. Minim. 2007. Effect of pH and salt concentration on the solubility and density of egg yolk and plasma egg yolk. LWT-Food Sci. Technol. 40: 1253-1258.
Sun, Y. and S. Hayakawa. 2002. Heat-induced gels white/ovalbumins from five avian species: thermal aggregation, molecular forces involved and rheological properties. J. Agric. Food Chem. 50: 1636-1642.
Szczesniak, A. S. 2002. Texture is a sensory property. Food Qual and Prefer. 13: 215-225.
Ternes, W. 2001. Egg protein. In Z. S. Sikorski (Ed.), Chemical and functional properties of food proteins (pp. 335). Boca Raton: CRC Press.
Tsai, W. T., J. M. Yang, C. W. Cheng, C. C. Lin and C. W. Yeh. 2006. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 97: 488-493.
Wang, X. T., Z. J. Gao, H. W. Xiao, Y. W. Wang and J. W. Bai. 2013. Enhanced mass transfer of osmotic dehydration and changes in microstructure of pickled salted egg under pulsed pressure. J. Food Eng. 117: 141-150.
Yamauchi, K., J. Kurisaki and K. Sasago. 1976. Polypeptide composition of hen’s egg yolk very low density lipoprotein. Agric. Biol. Chem. 40: 1581-1586.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62246-
dc.description.abstract鹹蛋在臺灣為一種傳統且普及的加工蛋製品。一般鹹蛋的製作可以利用浸漬法與塗佈法鹽漬20-35天。品質良好的鹹蛋黃具有砂質感、出油及橘色外觀的特性。由於傳統鹹蛋的製作所產生的鹹蛋白鹽含量較高,而較少應用在食品工業。因此本試驗探討利用快速的浸漬方法以尋找最佳的浸漬條件供製作鹹蛋黃。
試驗的第一部份利用複因子設計以檸檬酸與檸檬酸鐵分別與鹽搭配並尋找最佳的鹽漬條件。第二部份則比較分離鹹蛋黃與傳統鹹蛋黃間理化特性、微細結構與官能品評之間的差異。
從砂質感分析我們發現,將蛋黃浸漬在鹽漬液分別含有1.0%檸檬酸鐵+25%食鹽與0.5%檸檬酸+25%食鹽具有最佳的砂質感。在理化特性評估中指出檸檬酸鐵組與檸檬酸組在鹽漬40小時後具有最佳鹹蛋黃的特性。化學成分分析中檸檬鐵酸組與檸檬酸組的水分含量明顯較傳統鹹蛋黃高,而蛋白質與脂質則明顯低於傳統鹹蛋黃(P < 0.05)。在出油量比較中則沒有顯著差異(P > 0.05)。在質地分析中顯示,檸檬酸鐵組與檸檬酸組的分離鹹蛋黃硬度顯低於傳統鹹蛋黃,而彈性、內聚性、膠著性與咀嚼性也明顯較傳統鹹蛋黃低(P < 0.05)。利用掃描式電子顯微鏡、穿透式電子顯微鏡及雷射掃描共軛焦顯微鏡觀察蛋黃顆粒體與油滴分佈情形與傳統鹹蛋黃相比均有相似的微細結構。利用SDS-PAGE蛋白質分析指出生鮮的蛋黃與鹹蛋黃間的蛋白質片段沒有明顯的差別。在官能品評中指出以檸檬酸鐵組的蛋黃的外觀有較佳的接受度,但是質地、風味及整體接受度與傳統鹹蛋黃相比均沒有顯著差異(P > 0.05)。
綜上所述,將分離的雞蛋黃鹽漬在1.0%檸檬酸鐵+25%鹽與0.5%檸檬酸+25%鹽的鹽漬液中40小時具有較佳的鹹蛋黃品質,且與傳統鹹蛋黃相比具有相似的理化特性。根據結果,此鹽漬條件或許在未來可以成為鹹蛋黃製程的一個新選擇。
zh_TW
dc.description.abstractSalted egg is a traditional and popular egg product in Taiwan. Generally, salted eggs are produced by immersing method and coating method for about 20-35 days. The desirable characteristics of salted yolk are encompassed in the gritty texture, oil exudation and orange color. However, the process of producing salted yolk yields egg whites with high salt content, which does not have many uses in the food industry. Thus, the objective of this study was to use rapid immersion method to find the optimal salting conditions for producing separated salted egg yolks.
The first part of this study used ferric citrate (FC) and citric acid (CA) with salt as factorial design elements to research the optimal salting conditions. In the second part of this study, we investigated physicochemical properties, microstructures and conducted a sensory evaluation of separated salted yolk compared with salted yolk produced using the traditional immersion method (TM).
From the gritty texture analysis, our findings demonstrated that the salting solution containing 1.0% FC + 25% salt (FC group) and 0.5% CA + 25% salt (CA group) had the most desirable gritty texture. The conclusion from the physicochemical properties evaluation showed that for the FC group and the CA group, salting for 40 hours yielded the most desirable characteristics of salted yolk. The chemical composition analysis indicated that the moisture content of FC group and CA group were significantly higher than the TM group, whereas protein and lipid contents were significantly lower than the TM group (P < 0.05). No significant differences among the groups were found when comparing oil exudation (P > 0.05). From the texture profile analysis, the FC and CA group had significantly lower yolk hardness, springiness, cohesiveness, gumminess and chewiness when compared to the TM group (P < 0.05). The yolk granules and distribution of oil droplet were observed using the scanning electron microscope, the transmission electron microscope and the laser scanning confocal microscope. The micrographs indicated that the microstructures of the separated salted yolk groups were similar to the TM group. SDS-PAGE analysis indicated that there were no differences in the protein patterns among fresh yolk and salted yolks. Sensory evaluation showed that the appearance of the FC group was significantly better received than the CA group and the TM group (P < 0.05); however, the texture, flavor and overall acceptability of the FC and CA groups was not significantly different compared to traditional salted yolk.
In conclusion, the separated hen yolk salting in 1.0% FC + 25% salt and 0.5% CA + 25% salt of salting solution for 40 hours had desirable characteristics and similar physicochemical properties to traditional salted yolk. According to the results, these new experimentally determined salting conditions may apply on the new processes of producing salted yolk in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:36:14Z (GMT). No. of bitstreams: 1
ntu-102-R00626019-1.pdf: 2855068 bytes, checksum: 8f54c29a7a562f3e71289e0743dd1296 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口委審定書
誌謝
目錄 I
表目錄 III
圖目錄 IV
中文摘要 i
英文摘要 ii
前言 iv
壹 文獻檢討 1
一、傳統帶殼鹹蛋之製造方法 1
(一)塗佈法 1
(二)浸漬法 1
二、鹹蛋鹽漬期間之理化變化 3
(一)鹹蛋白鹽漬期間之理化變化 4
(二)鹹蛋黃鹽漬期間之理化變化 11
三、快速鹹蛋黃製造技術之開發 17
(一)研究概況 17
(二)禽蛋結構對鹹蛋黃形成之影響 18
貳 材料與方法 24
一、試驗設計 24
二、實驗材料 24
三、實驗方法 24
(一)帶殼鹹蛋之製備 24
(二)分離鹹蛋黃之製備 24
(三)成分分析 28
(四)理化分析 32
(五)微細結構觀察 36
(六)SDS-PAGE蛋白質電泳分析 39
(七)官能品評 42
(八)統計分析 42
叁 結果與討論 44
一、鹽漬期間帶殼鹹蛋之外觀變化 44
二、最佳浸漬條件之探討 46
(一)砂質感之評估 46
(二)理化特性之分析 48
三、不同鹽漬方法所得鹹蛋黃理化特性之探討與比較 56
(一)化學成分分析 56
(二)出油量分析 58
(三)質地分析 59
(四)色澤分析 60
四、微細結構變化之探討 63
(一)掃描式電子顯微鏡觀察 63
(二)穿透式電子顯微鏡觀察 65
(三)雷射掃描共軛焦顯微鏡觀察 67
五、SDS-PAGE蛋白質電泳分析 69
六、官能品評試驗 71
肆 結論 74
參考文獻 76
dc.language.isozh-TW
dc.title利用分離雞蛋蛋黃製作鹹蛋黃之研究zh_TW
dc.titleDevelopment of salted yolk by using separated hen yolken
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王增興,林詠凱,何若瑄
dc.subject.keyword鹹蛋,分離蛋黃,鹽漬,砂質感,出油,zh_TW
dc.subject.keywordSalted yolk,Separated yolk,Salting,Gritty texture,Oil exudation,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2013-07-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved