Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王名儒(Min-Zu Wang)
dc.contributor.authorKai-Jen Tienen
dc.contributor.author田凱仁zh_TW
dc.date.accessioned2021-06-16T13:35:29Z-
dc.date.available2013-07-31
dc.date.copyright2013-07-31
dc.date.issued2013
dc.date.submitted2013-07-17
dc.identifier.citation[1] “Standard Model” (Wikipedia), http://en.wikipedia.org/wiki/
Standard_Model
[2] “Standard Model of Elementary Particles” (Wikipedia), http:
//en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_
Particles.svg
[3] “Elementary Particle Interactions” (Wikipedia), http://en.
wikipedia.org/wiki/File:Elementary_particle_interactions.
svg
[4] N. Cabibbo, “Unitary Symmetry and Leptonic Decays”, Phys. Rev.
Lett. 10, 531–533 (1963).
[5] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable
Theory of Weak Interaction”, Progress of Theoretical Physics 49, 2,
652–657 (1973).
[6] L. Wolfenstein, “Parametrization of the Kobayashi-Maskawa Matrix”,
Phys. Rev. Lett. 51, 1945–1947 (1983).
[7] J. Beringer et al. (Particle Data Group), “Review of Particle Physics”,
Phys. Rev. D 86, 010001 (2012).
[8] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, “Evidence
for the 2π Decay of the K0
2 Meson”, Phys. Rev. Lett. 13, 138–140 (1964).
[9] A. D. Sakharov, “Violation of CP Invariance, C Asymmetry, and Baryon
Asymmetry of the Universe”, Pisma Zh. Eksp. Teor. Fiz. 5, 32–35
(1967).
[10] Ashton B. Carter and A. I. Sanda, “CP Nonconservation in Cascade
Decays of B Mesons”, Phys. Rev. Lett. 45, 952–954 (1980).
[11] K. Abe et al. (Belle Collaboration), “Observation of Large CP Violation
in the Neutral B Meson System”, Phys. Rev. Lett. 87, 091802 (2001).
[12] S. W. Herb et al., “Observation of a Dimuon Resonance at 9.5 GeV
in 400-GeV Proton-Nucleus Collisions”, Phys. Rev. Lett. 39, 252–255
(1977).
[13] T. E. Browder and K. Honscheid, “B Mesons”, Prog. Part. Nucl. Phys.
35, 0, 81–219 (1995).
[14] “The Upsilon System” (Cornell’s Laboratory for Elementary-Particle
Physics), http://www.lns.cornell.edu/public/lab-info/upsilon.
html
[15] M. Feindt et al., “A Hierarchical NeuroBayes-based Algorithm for Full
Reconstruction of B Mesons at B Factories”, Nucl. Instrum. Methods
Phys. Res. Sect. A 654, 432–440 (2011).
[16] P. Urquijo et al. (Belle Collaboration), “Measurement of |Vub| from
Inclusive Charmless Semileptonic B Decays”, Phys. Rev. Lett. 104,
021801 (2010).
[17] P. del Amo Sanchez et al. (BaBar Collaboration), “Study of B → πlν
and B → ρlν decays and determination of |Vub|”, Phys. Rev. D 83,
032007 (2011).
[18] H. Ha et al. (Belle Collaboration), “Measurement of the decay B0 →
π−ℓ+ν and determination of |Vub|”, Phys. Rev. D 83, 071101 (2011).
[19] N. E. Adam et al. (CLEO Collaboration), “Search for B → pe−νeX
decay using a partial reconstruction method”, Phys. Rev. D 68, 012004
(2003).
[20] W.-S. Hou and A. Soni, “Pathways to Rare Baryonic B Decays”, Phys.
Rev. Lett. 86, 4247–4250 (2001).
[21] J. P. Lees et al. (BaBar Collaboration), “Search for B → Λ+c Xℓ−νℓ
Decays in Events with a Fully Reconstructed B Meson”, Phys. Rev. D
85, 011102 (2012).
[22] C.-Q. Geng and Y.-K. Hsiao, “Semileptonic B− → p‾pℓ−‾νℓ Decays”,
Phys. Lett. B 704, 495–498 (2011).
[23] K. Abe et al. (Belle Collaboration), “Observation of B
0 → D(∗)0pp”,
Phys. Rev. Lett. 89, 151802 (2002).
[24] M.-Z. Wang et al. (Belle Collaboration), “Observation of B+ → ppπ+,
B0 → ppK0, and B+ → ppK∗+”, Phys. Rev. Lett. 92, 131801 (2004).
[25] M.-Z. Wang et al. (Belle Collaboration), “Study of the baryonantibaryon
low-mass enhancements in charmless three-body baryonic B
decays”, Physics Letters B 617, 30, 141 – 149 (2005), ISSN 0370-2693.
[26] B. Aubert et al. (BaBar Collaboration), “Measurements of the decays
B0 → D
0
pp, B0 → D
∗0
pp, B0 → D−ppπ+, and B0 → D∗−ppπ+”, Phys.
Rev. D 74, 051101 (2006).
[27] J.-H. Chen et al. (Belle Collaboration), “Observation of B0 → ppK∗0
with a Large K∗0 Polarization”, Phys. Rev. Lett. 100, 251801 (2008).
[28] High Energy Accelerator Research Organization (KEK), http://accl.
kek.jp/introKEKB/
[29] S. Kurokawa and E. Kikutani, “Overview of the KEKB Accelerators”
and other papers included in the same Volume, Nucl. Instrum. Methods
Phys. Res. Sect. A 499, 1, 1–7 (2003).
[30] T. Abe et al., “Achievements of KEKB” and following articles up to
03A011., Prog. Theor. Exp. Phys. 2013, 3 (2013).
[31] Super KEKB, http://www-acc.kek.jp/KEKB/
[32] Belle II Collaboration, http://belle2.kek.jp/
[33] A. Abashian et al. (Belle Collaboration), “The Belle Detector”, Nucl.
Instrum. Methods Phys. Res. Sect. A 479, 1, 117–232 (2002).
[34] J. Brodzicka et al. (Belle Collaboration), “Physics Achievements from
the Belle Experiment”, Prog. Theor. Exp. Phys. 2012, 1 (2012).
[35] Z. Natkaniec et al. (Belle SVD2 Group), “Belle SVD2 Vertex Detector”,
Nucl. Instrum. Methods Phys. Res. Sect. A 568, 1, 269–273 (2006).
[36] K. Hanagaki et al. (Belle Collaboration), “Electron Identification in
Belle”, Nucl. Instrum. Methods Phys. Res. Sect. A 485, 3, 490–503
(2002).
[37] K. Miyabayashi, “Belle Electromagnetic Calorimeter”, Nucl. Instrum.
Methods Phys. Res. Sect. A 494, 1V3, 298 – 302 (2002).
[38] A. Abashian et al. (Belle Collaboration), “Muon Identification in the
Belle Experiment at KEKB”, Nucl. Instrum. Methods Phys. Res. Sect.
A 491, 69–82 (2002).
[39] Y. Ushiroda et al. (Belle Collaboration), “Development of the Central
Trigger System for the Belle Detector at the KEK B-factory”, Nucl.
Instrum. Methods Phys. Res. Sect. A 438, 460–471 (1999).
[40] “BASF Overview” (Belle internal ), http://belle.kek.jp/secured/
wiki/doku.php?id=software:basf
[41] J. R. Klein and A. Roodman, “Blind Analysis in Nuclear and Particle
Physics”, Annu. Rev. Nucl. Part. Sci. 55, 141–163 (2005).
[42] David J. Lange, “The EvtGen Particle Decay Simulation Package”,
Nucl. Instrum. Methods Phys. Res. Sect. A 462, 1V2, 152–155 (2001).
[43] Torbjorn Sjostrand et al., “High-energy-physics Event Generation with
Pythia 6.1”, Computer Physics Communications 135, 2, 238 – 259
(2001), ISSN 0010-4655.
[44] Elisabetta Barberio and Zbigniew W﹐as, “PHOTOS - a Universal Monte
Carlo for QED Radiative Corrections: version 2.0”, Computer Physics
Communications 79, 2, 291 – 308 (1994), ISSN 0010-4655.
[45] R. Brun et al., “GEANT 3.21”, CERN Report DD/EE/84-1 (1984).
[46] “Instruction for CaseA/CaseB Data Sets” (Belle internal ), http://
belle.kek.jp/group/software/newdst/How2UseNewData.html
[47] B. Casey, “HadronB” (Belle internal ), Belle Note 390 (2001).
[48] “Skim Quickview” (Belle internal ), http://belle.kek.jp/secured/
wiki/doku.php?id=software:skim
[49] J.-T. Wei et al. (Belle Collaboration), “Study of the Decay Mechanism
for B+ → p‾pK+ and B+ → p‾pπ+ ”, Physics Letters B 659, 1V2, 80 –
86 (2008), ISSN 0370-2693.
[50] H. Hamasaki et al., “Kaon Identification in Belle” (Belle internal ),
Belle Note 321 (2000).
[51] A. Sibidanov and K. Varvell, “Exclusive B → Xuℓν Decays Using New
Full Reconstruction Tagging” (Belle internal ), Belle Note 1206 (2011).
[52] P. Chen et al. (Belle Collaboration), “Observation of B− → pΛD0 at
Belle”, Phys. Rev. D 84, 071501 (2011).
[53] Geoffrey C. Fox and Stephen Wolfram, “Observables for the Analysis of
Event Shapes in e+e− Annihilation and Other Processes”, Phys. Rev.
Lett. 41, 1581–1585 (1978).
[54] “Minuit”, http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/
minmain.html
[55] PID Joint Group (Belle internal ), http://belle.kek.jp/group/pid_
joint/
[56] L. Hinz, C. Jacoby, and J. Wicht, “Lepton Efficiency and Systematic
Error for Experiments 21 to 27” (Belle internal ), Belle Note 777 (2004).
[57] L. Hinz, “Lepton ID Efficiency Correction and Systematic Error” (Belle
internal ), Belle Note 954 (2006).
[58] G. Majumder, “Proton Identification Efficiency and Fake Rates from
K/π” (Belle internal ), Belle Note 670 (2003).
[59] K.-F. Chen, T.-L. Kuo, and Y.-J. Lee, “Λ Selection at Belle” (Belle
internal ), Belle Note 684 (2004).
[60] S. Nishida, “Study of Kaon and Pion Identification Using Inclusive D∗
Sample” (Belle internal ), Belle Note 779 (2005).
[61] “Mn Fit”, http://www-zeus.physik.uni-bonn.de/~brock/mn_fit.
html
[62] G. Cowan, “Error Analysis for Effciency”, RHUL Physics (2008), http:
//www-zeus.physik.uni-bonn.de/~brock/mn_fit.html
[63] B. Bhuyan, “High PT Tracking Efficiency Using Partially Reconstructed
D∗ Decays” (Belle internal ), Belle Note 1165 (2010).
[64] “Number of B Events in HadronB(J)”(Belle internal ), http://belle.
kek.jp/secured/nbb/nbb.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62234-
dc.description.abstract本篇論文提出B介子經由 B- → p pbar l nubar (l=e,μ) 半輕子與雙重子途徑衰變之證據。實驗數據為日本高能加速器研究機構 B 介子工廠 (KEKB) 之Belle 偵測器在能量不對稱之電子正子對撞機中所收集,來自 Υ(4S) 共振態衰變的 772 百萬 B Bbar 介子對。本實驗並應用以神經網路演算法為基礎建構之強子標籤法提升衰變分析的效率。我們量測到 B- → p pbar l nubar 的分支比為 [5.8_(-2.1)^(+2.4) (統計誤差)±0.9(系統誤差)]×10^(-6),並得到 3.2 個標準差之顯著度。同時,我們也估計了 B- → p pbar l nubar 分支比在 90% 信心水準下的上限值為 9.6×10^(-6)。此量測結果對於 B 介子衰變重子躍遷形狀因子之限制條件有所幫助,相關主題亦值得於新一代 B 介子工廠與 Belle II 實驗中進行後續研究。zh_TW
dc.description.abstractWe find evidence for the semileptonic baryonic decay B- → p pbar l nubar (l=e,μ), based on a data sample of 772 million $B ar B$ pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy electron-positron collider. A neural-network based hadronic $B$-meson tagging method is used in this study. The branching fraction of B- → p pbar l nubar is measured to be [5.8_(-2.1)^(+2.4) (stat.)±0.9(syst.)]×10^(-6) with a significance of 3.2 sigma, where lepton universality is assumed. We also estimate the corresponding upper limit: B(B- → p pbar l nubar) < 9.6×10^(-6) at the 90% confidence level. This measurement helps constrain the baryonic transition form factor in B decays.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:35:29Z (GMT). No. of bitstreams: 1
ntu-102-R97222014-1.pdf: 22106426 bytes, checksum: 6d196a7beb4210b3baa2eee3e23389db (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction 1
1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 CP Violation . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 B Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Full Reconstruction Tagging Method . . . . . . . . . . . . . . 7
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Belle Experiment 11
2.1 KEKB Accelerator . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Belle Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Beam Pipe . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Silicon Vertex Detector (SVD) . . . . . . . . . . . . . . 18
2.2.3 Extreme Forward Calorimeter (EFC) . . . . . . . . . . 21
2.2.4 Central Drift Chamber (CDC) . . . . . . . . . . . . . . 22
2.2.5 Aerogel ˇCherenkov Counter (ACC) . . . . . . . . . . . 23
2.2.6 Time of Flight (TOF) . . . . . . . . . . . . . . . . . . 24
2.2.7 Electromagnetic Calorimeter (ECL) . . . . . . . . . . . 27
2.2.8 KL and Muon Detection System (KLM) . . . . . . . . 29
2.2.9 Trigger and Data Acquisition . . . . . . . . . . . . . . 30
2.3 Belle Analysis Framework . . . . . . . . . . . . . . . . . . . . 32
3 Event Selection and Reconstruction 33
3.1 Data Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Blind Analysis . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . 34
3.1.3 Fix mdst . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Signal Decay Model . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 B Candidate Reconstruction . . . . . . . . . . . . . . . . . . . 36
3.4 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Charged Particle Selection . . . . . . . . . . . . . . . . 37
3.4.2 Tag Side Selection . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Best Candidate Selection . . . . . . . . . . . . . . . . . 40
3.4.4 Rare B Decays Background . . . . . . . . . . . . . . . 43
3.5 Comparison between MC and Data in Sideband Region . . . . 45
3.6 Efficiency Cut Flow . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Signal Extraction and Fitting 49
4.1 Fitting Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Probability Distribution Functions Modeling . . . . . . . . . . 50
4.3 Measurements of Branching Fraction . . . . . . . . . . . . . . 51
4.4 Ensemble Test on Fitters . . . . . . . . . . . . . . . . . . . . . 53
4.5 Control Sample Study . . . . . . . . . . . . . . . . . . . . . . 55
5 Proton Identification Efficiency Study 58
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Selection of Λ . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Fitting Procedure . . . . . . . . . . . . . . . . . . . . . 62
5.3 Error Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Statistical Error . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Systematic Error . . . . . . . . . . . . . . . . . . . . . 66
5.3.3 Total Error . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Correction Tables and Package . . . . . . . . . . . . . . . . . . 67
6 Results 72
6.1 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Track Reconstruction . . . . . . . . . . . . . . . . . . . 74
6.2.2 Charged Particle Identification . . . . . . . . . . . . . . 74
6.2.3 Tag Calibration . . . . . . . . . . . . . . . . . . . . . . 74
6.2.4 Number of B ‾B . . . . . . . . . . . . . . . . . . . . . . 75
6.2.5 Signal Decay Model . . . . . . . . . . . . . . . . . . . . 75
6.2.6 PDF Shape . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.7 Fitting Region . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Comparisons between MC and Data in Signal Region . . . . . 78
6.4 Upper Limit Estimation for Branching Fraction . . . . . . . . 80
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A Number of B events in HadronB(J) 82
B 2D Histograms Related to Proton Identification Efficiency
Study 83
C Correction Tables for Proton Identification Efficiency 92
dc.language.isoen
dc.subject半輕子衰變zh_TW
dc.subjectB介子zh_TW
dc.subject強子標籤法zh_TW
dc.subject貝爾實驗zh_TW
dc.subjecthadronic tagen
dc.subjectB mesonen
dc.subjectBelleen
dc.subjectsemileptonic decayen
dc.title以強子標籤法尋找B介子衰變至正反質子對與輕子對之研究zh_TW
dc.titleSearch for B- → p pbar l nubar with Hadronic Tag at Belleen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張寶棣(Pao-Ti Chang),侯維恕(Wei-Shu Hou),熊怡(Yee Hsiung)
dc.subject.keywordB介子,強子標籤法,半輕子衰變,貝爾實驗,zh_TW
dc.subject.keywordB meson,hadronic tag,semileptonic decay,Belle,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2013-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
21.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved