Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林惠雯(Hui-Wen Lin)
dc.contributor.authorChing-Peng Huangen
dc.contributor.author黃景芃zh_TW
dc.date.accessioned2021-06-16T13:34:53Z-
dc.date.available2013-07-30
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-18
dc.identifier.citation[1] CAIB ˘AR, Mirel. Minimal models of canonical 3-fold singularities and their Betti numbers.
International Mathematics Research Notices, 2005, vol. 2005, no 26, p. 1563-1581.
[2] CHEN, Jhih-Bin ; On crepant resolution of some hypersurface singularities. MA Thesis, Na-
tional Central University, 2004.
[3] COX, David A., LITTLE, John B., et SCHENCK, Henry K. Toric varieties. American Math-
ematical Soc., 2011.
[4] DANILOV, Vladimir Ivanovich. Birational geometry of toric 3-folds. Mathematics of the
USSR-Izvestiya, 1983, vol. 21, no 2, p. 269.
[5] DOLGACHEV, Igor Weighted projective spaces. Group actions and vector fields, Lecture
Notes in Math., vol. 956, Springer-Verlag, 1982, pp. 34-71.
[6] FLETCHER, A. R. Working with weighted complete intersections. Max-Planck-Inst. f. Math-
ematik, 1989.
[7] HAYAKAWA, Takayuki. Blowing ups of 3-dimensional terminal singularities. Publications
of the Research Institute for Mathematical Sciences, 1999, vol. 35, no 3, p. 515-570.
[8] HODGE, William V. D., et PEDOE, Daniel 1994. Methods of algebraic geometry. Cambridge
(GB): Cambridge university press.
[9] KOLL ’AR, J’anos et MORI, Shigefumi. Classification of three-dimensional flips. Journal of
the American Mathematical Society, 1992, vol. 5, no 3, p. 533-703.
[10] KOLL ’AR, J’anos et MORI, Shigefumi. Birational geometry of algebraic varieties. Cam-
bridge University Press, 2008.
[11] LIN, Hui-Wen Combinatorial method in adjoint linear systems on toric varieties. Michigan
Math. J. 51 (2003), no. 3, 491501.
[12] MATSUKI, Kenji. Introduction to the Mori program. Universitext, Springer- Verlag, New
York, 2002.
[13] MORI, Shigefumi. On 3-dimensional terminal singularities. Nagoya Mathematical Jour-
nal, 1985, vol. 98, p. 43-66.
[14] REID, Miles. Canonical 3-folds, in Journ’ees de g’eom’etrie alg’ebrique d’Angers, ed. A.
Beauville, Sijthoff and Noordhoff, Alphen 1980, 273–310.
[15] REID, Miles. Decomposition of toric morphisms. Arithmetic and geometry, Vol.II, 395418,
Progr. Math., 36 , Birkh‥auser Boston, MA, 1983.
[16] REID, Miles. Minimal models of canonical 3-folds, in Advanced studies in Pure Math. 1,
Analytic varieties and algebraic varieties, ed. S. Iitaka, Kinokuniya and North-Holland,
1983, 131–180.
[17] REID, Miles. Young person’s guide to canonical singularities, in Algebraic Geometry, Bow-
doin 1985, ed. S. Bloch, Proc. of Symposia in Pure Math. 46, A.M.S. (1987), vol. 1, 345–
414.
[18] REID, Miles. The Du Val singularities An; Dn; E6; E7; E8. www.warwick.ac.uk/
˜masda/surf/more/DuVal.pdf
[19] REID, Miles. Surface cyclic quotient singularities and Hirzebruch Jung resolutions.
homepages.warwick.ac.uk/˜masda/surf/more/cyclic.pdf
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62224-
dc.description.abstract本文根據 Miles Reid 及森重文等人的研究,探討三維 canonical 奇異點的理論,主要著重於三維 terminal 奇異點的分類;並於附錄中研習 toric morphism 的分解,以助於瞭解 toric 幾何中 terminal 奇異點所扮演的角色。zh_TW
dc.description.abstractBased on the work of Miles Reid, I would like to survey the
theory of 3-dimensional canonical singularities in this article. I mainly concentrate on the classification of 3-dimensional terminal singularities. Also, in the appendix, I study the decomposition of toric morphisms in order to know the role of terminal singularities played in the Minimal Model Program for toric varieties.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:34:53Z (GMT). No. of bitstreams: 1
ntu-102-R00221008-1.pdf: 464686 bytes, checksum: 3a848f9af9c19a1756fed21e87b1434a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1. Introduction 1
1.1. Definitions and conventions 2
1.2. Definition of canonical singularities 2
1.3. Hyperquotient singularities 2
1.4. Overview of the article 3
2. Reductions 5
2.1. Reduction to terminal singularities 5
2.2. Using toric techniques 9
2.3. The terminal lemma and its proof 14
3. Classification of 3-dimensional terminal singularities 22
3.1. First steps 23
3.2. The cA case 26
3.3. The odd case 29
3.4. The cD-E case 30
3.5. Further results 34
Appendix A. Decomposition of toric morphisms 34
A.1. Contraction of extremal rays 34
A.2. Flipping 37
A.3. The canonical divisor 38
References 41
dc.language.isoen
dc.subjectcanonical 奇異點zh_TW
dc.subjectterminal 奇異點zh_TW
dc.subject三維 varietyzh_TW
dc.subjecttoric MMPzh_TW
dc.subjectterminal MMPen
dc.subject3-folden
dc.subjectterminal singularityen
dc.subjectcanonical singularityen
dc.title三維 canonical 奇異點理論的探討zh_TW
dc.titleA Discussion on the Theory of 3-dimensional Canonical Singularitiesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王金龍(Chin-Lung Wang),李元斌(Yuan-Pin Lee)
dc.subject.keyword三維 variety,canonical 奇異點,terminal 奇異點,toric MMP,zh_TW
dc.subject.keyword3-fold,canonical singularity,terminal singularity,terminal MMP,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2013-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
453.79 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved