Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62186
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊烽正
dc.contributor.authorHui-Ling Chenen
dc.contributor.author陳暉陵zh_TW
dc.date.accessioned2021-06-16T13:32:36Z-
dc.date.available2013-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-19
dc.identifier.citationAras, Necati, Aksen, Deniz, & Tuğrul Tekin, Mehmet. (2011). Selective multi-depot vehicle routing problem with pricing. Transportation Research Part C: Emerging Technologies, 19(5), 866-884. doi: 10.1016/j.trc.2010.08.003
Chao, I. Ming, Golden, Bruce L., & Wasil, Edward A. (1996). The team orienteering problem. European Journal of Operational Research, 88(3), 464-474. doi: http://dx.doi.org/10.1016/0377-2217(94)00289-4
Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91. doi: 10.2307/2627477
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1), 29-41. doi: 10.1109/3477.484436
Feillet, Dominique, Dejax, Pierre, & Gendreau, Michel. (2005). Traveling Salesman Problems with Profits. Transportation Science, 39(2), 188-205. doi: 10.1287/trsc.1030.0079
Fisher, Marshall L., & Jaikumar, Ramchandran. (1981). A generalized assignment heuristic for vehicle routing. Networks, 11(2), 109-124. doi: 10.1002/net.3230110205
Gendreau, Michel, Hertz, Alain, & Laporte, Gilbert. (1996). The Traveling Salesman Problem with Backhauls. Computers & Operations Research, 23(5), 501-508. doi: http://dx.doi.org/10.1016/0305-0548(95)00036-4
Gendreau, Michel, Laporte, Gilbert, & Vigo, Daniele. (1999). Heuristics for the traveling salesman problem with pickup and delivery. Computers & Operations Research, 26(7), 699-714. doi: http://dx.doi.org/10.1016/S0305-0548(98)00085-9
Glover, F., & Laguna, M. (1997). Tabu search. Boston [etc.]: Kluwer Academic Publishers.
Golden, Bruce L., Levy, Larry, & Vohra, Rakesh. (1987). The orienteering problem. Naval Research Logistics (NRL), 34(3), 307-318. doi: 10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
Ho, William, Ho, George T. S., Ji, Ping, & Lau, Henry C. W. (2008). A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4), 548-557. doi: 10.1016/j.engappai.2007.06.001
Holland, John H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Oxford, England: U Michigan Press.
Kara, Imdat, Laporte, Gilbert, & Bektas, Tolga. (2004). A note on the lifted Miller–Tucker–Zemlin subtour elimination constraints for the capacitated vehicle routing problem. European Journal of Operational Research, 158(3), 793-795. doi: http://dx.doi.org/10.1016/S0377-2217(03)00377-1
Laporte, Gilbert, & Martello, Silvano. (1990). The selective travelling salesman problem. Discrete Applied Mathematics, 26(2–3), 193-207. doi: http://dx.doi.org/10.1016/0166-218X(90)90100-Q
Mittenthal, John, & Noon, Charles E. (1992). An Insert/Delete Heuristic for the Travelling Salesman Subset-Tour Problem with One Additional Constraint. J Oper Res Soc, 43(3), 277-283.
Mosheiov, Gur. (1998). Vehicle routing with pick-up and delivery: tour-partitioning heuristics. Computers & Industrial Engineering, 34(3), 669-684. doi: http://dx.doi.org/10.1016/S0360-8352(97)00275-1
Tan, K. C., Lee, L. H., & Ou, K. (2001). Artificial intelligence heuristics in solving vehicle routing problems with time window constraints. Engineering Applications of Artificial Intelligence, 14(6), 825-837. doi: http://dx.doi.org/10.1016/S0952-1976(02)00011-8
Thangiah, Sam R., Potvin, Jean-Yves, & Sun, Tong. (1996). Heuristic approaches to vehicle routing with backhauls and time windows. Computers & Operations Research, 23(11), 1043-1057. doi: http://dx.doi.org/10.1016/0305-0548(96)00018-4
Wren, Anthony, & Holliday, Alan. (1972). Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Points. Operational Research Quarterly (1970-1977), 23(3), 333-344. doi: 10.2307/3007888
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62186-
dc.description.abstract價選式多車場車輛途程問題是車輛途程問題中衍生問題,其問題源自於資源再生企業派車於販售商回收貨品流程。過往學者將此問題定義為一標竿問題,且嘗試以整數規劃模式,以及禁忌搜尋法求解。遺傳演算法為一萬用啟發式演算法,其透過生物演化中,物競天擇的演化概念,代次淘汰適應性欠佳的解。而蟻拓優化演算法也屬於萬用啟發式演算法,其設計概念源自於螞蟻覓食過程中參照費洛蒙方式,代次演化螞蟻解。本研究承襲此概念提出用於求解價選式多車場車輛途程問題下的蟻拓以及遺傳演算法,於遺傳演算法中更提出一較適於本問題下的初始解產生模式、染色體編碼以及解碼方式。此外為了驗證本研究演算機制的效能,與學者取得問題大小不同的40個標竿問題進行比較。本研究遺傳演算初始解產生法將針對此40個不同問題與本研究所應用於求解價選式多車場車輛問題的啟發式演算法做比較,結果可發現本研究初始解產生方式優於兩啟發式演算法。且對於學者所提出的整數規劃以及禁忌演算法,本研究已遺傳演算法以及蟻拓優化演算法進行比較,結果在大部分問題下,蟻拓優化演算法可於一定時間內求得解品質較佳的解,遺傳演算法雖略遜於禁忌演算法,但其求解速度較快。zh_TW
dc.description.abstractSelective Mulit Depot Vehicle Routing Problem with Pricing, SMDVRPP, is a derived problem of Classic Vehicle Routing Problem. This problem origin from the process of recycle enterprise setting fleet to buy recyclable product owned by the dealer. It is defined as a benchmark problem by theacademic and use integer programming and Tabu Search, TS, to solve this problem, because the quality of solution is still not enough. Our research propose two kind of meta heurisitc algorithm which are genetic algorithm, GA, and ant colony optimization, ACO, algorithm try to find the so far best solution better than ever. The concept of GA is through the evolution of chromosome. It will eliminate the chromosomes which have lower fitness value to get the best chromosome. The concept of ACO is by imitating ant foraging behavior and leaving pheromone at the road, through the pheromone value to find the best solution. Besides, our research are also propose chromosome encoding and decoding way which is suitable of SMDVRPP problem. For verify quality, we connectedacademic to obtain 40 different size benchmark problems for comparison. In this study, the genetic algorithm initialize solution for this problem to compare the results of the two heuristic algorithms, the evidence shows it is effective. And compare the result among the integer programming, Tabu Search, GA , ACO, finally we found the ACO algorithm can obtain a best solution within a certain period of time.GA although the quality is slightly lower thanTabu Search, but it can get solution faster.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:32:36Z (GMT). No. of bitstreams: 1
ntu-102-R00546015-1.pdf: 2776019 bytes, checksum: ffd28a47a550e5018a17082c0a16babc (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
1. 緒論 1
1.1. 研究背景 1
1.2. 研究目的 2
1.3. 研究方法 3
2. 文獻探討 5
2.1. 車輛途程問題衍生問題 5
2.1.1. 車輛途程問題 5
2.1.2. 車輛途程問題數學模式 6
2.1.3. 衍生問題特性與比較 6
2.2. 求解方式 12
2.2.1. 禁忌搜尋法 12
2.2.2. 遺傳演算法 12
2.2.3. 蟻拓優化演算法 13
2.2.4. 區域搜尋法 14
2.3. 小結 17
3. 價選式多車場車輛途程問題之遺傳及蟻拓優化演算法 18
3.1. 價選式多車場車輛途程問題定義 18
3.1.1. 問題描述與假設 18
3.1.2. 數學模式及解空間複雜度 19
3.2. 價選式多車場車輛途程問題之求解模式 23
3.2.1. 價選式多車場車輛途程問題的貪婪解建構法 23
3.2.2. 價選式多車場車輛途程問題的預期收購建構法 26
3.3. 價選式多車場車輛途程問題之遺傳演算法 29
3.3.1. 染色體編碼法、解碼法 29
3.3.2. 染色體適應值函數 30
3.3.3. 插入/刪除區域搜尋法 31
3.3.4. 遺傳演算法之初始解產生 32
3.3.5. 遺傳演算法的交配、突變及篩選演算 34
3.3.6. 小結 35
3.4. 價選式多車場車輛途程問題之蟻拓優化演算法 35
3.4.1. 蟻拓優化演算法之費洛蒙設計 36
3.4.2. 蟻拓優化演算法之求解模式 36
3.4.3. 蟻拓優化演算法之費洛蒙更新 39
3.4.4. 小結 40
4. 遺傳及蟻拓優化演算法求解系統及範例驗證 41
4.1. 遺傳及蟻拓優化演算法求解系統 41
4.2. 系統驗證分析 45
4.2.1. 遺傳演算法初始解效能分析 46
4.2.2. 遺傳及蟻拓優化演算法成效分析 49
4.2.3. 標竿問題已知最佳解格式定義 52
5. 結論 54
5.1. 結論 54
5.2. 未來研究建議 54
參考文獻 55
dc.language.isozh-TW
dc.subject遺傳演算法zh_TW
dc.subject蟻拓優化演算法zh_TW
dc.subject車輛途程問題zh_TW
dc.subject反向供應鏈zh_TW
dc.subjectAnt Colony Optimizationen
dc.subjectVehicle Routing Problemen
dc.subjectReverse Supply Chainen
dc.subjectGenetic Algorithmen
dc.title以蟻拓優化演算法及遺傳演算法求解價選式多車場車輛途程問題zh_TW
dc.titleAnt Colony Optimization and Genetic Algorithm for Solving Selective Multi Depot Vehicle Routing Problem with Pricingen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡黃德,林長青,黃奎隆
dc.subject.keyword遺傳演算法,蟻拓優化演算法,車輛途程問題,反向供應鏈,zh_TW
dc.subject.keywordGenetic Algorithm,Ant Colony Optimization,Vehicle Routing Problem,Reverse Supply Chain,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2013-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved