請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王致恬 | |
| dc.contributor.author | Shao-Yen Kao | en |
| dc.contributor.author | 高韶巖 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:31:09Z | - |
| dc.date.available | 2018-07-26 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-21 | |
| dc.identifier.citation | Ackman, J.B., Burbridge, T.J., and Crair, M.C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219-225.
Bai, J., and Chapman, E.R. (2004). The C2 domains of synaptotagmin--partners in exocytosis. Trends in biochemical sciences 29, 143-151. Bansal, A., Singer, J.H., Hwang, B.J., Xu, W., Beaudet, A., and Feller, M.B. (2000). Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 7672-7681. Barber, C.F., Jorquera, R.A., Melom, J.E., and Littleton, J.T. (2009). Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains. J Cell Biol 187, 295-310. Ben-Ari, Y. (2001). Developing networks play a similar melody. Trends Neurosci 24, 353-360. Berntson, A.K., and Morgans, C.W. (2003). Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas. Journal of vision 3, 274-280. Beth Stevens1, , Nicola J. Allen1, Luis E. Vazquez1, Gareth R. Howell3, 4, Karen S. Christopherson1, Navid Nouri1, Kristina D. Micheva2, Adrienne K. Mehalow3, 4, Andrew D. Huberman1 (2008). Immune System Plays Unexpected Role in Brain Development (National institude on Drug abuse). Blankenship, A.G., and Feller, M.B. (2010). Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature reviews Neuroscience 11, 18-29. Bommert, K., Charlton, M.P., DeBello, W.M., Chin, G.J., Betz, H., and Augustine, G.J. (1993). Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363, 163-165. Brose, N., Petrenko, A.G., Sudhof, T.C., and Jahn, R. (1992). Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021-1025. Brown, H., Meister, B., Deeney, J., Corkey, B.E., Yang, S.N., Larsson, O., Rhodes, C.J., Seino, S., Berggren, P.O., and Fried, G. (2000). Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis. Diabetes 49, 383-391. Brunger, A.T. (2005). Structure and function of SNARE and SNARE-interacting proteins. Quarterly reviews of biophysics 38, 1-47. Butts, D.A. (2002). Retinal waves: implications for synaptic learning rules during development. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 8, 243-253. Butz, S., Fernandez-Chacon, R., Schmitz, F., Jahn, R., and Sudhof, T.C. (1999). The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. The Journal of biological chemistry 274, 18290-18296. Chae, Y.K., Abildgaard, F., Chapman, E.R., and Markley, J.L. (1998). Lipid binding ridge on loops 2 and 3 of the C2A domain of synaptotagmin I as revealed by NMR spectroscopy. The Journal of biological chemistry 273, 25659-25663. Chapman, E.R., Desai, R.C., Davis, A.F., and Tornehl, C.K. (1998). Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. The Journal of biological chemistry 273, 32966-32972. Cheng, Y., Sequeira, S.M., Malinina, L., Tereshko, V., Sollner, T.H., and Patel, D.J. (2004). Crystallographic identification of Ca2+ and Sr2+ coordination sites in synaptotagmin I C2B domain. Protein science : a publication of the Protein Society 13, 2665-2672. Chiang, C.W., Chen, Y.C., Lu, J.C., Hsiao, Y.T., Chang, C.W., Huang, P.C., Chang, Y.T., Chang, P.Y., and Wang, C.T. (2012). Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PloS one 7, e47465. Cook, P.M., Prusky, G., and Ramoa, A.S. (1999). The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret. Visual neuroscience 16, 491-501. Craxton, M. (2004). Synaptotagmin gene content of the sequenced genomes. BMC genomics 5, 43. Dai, H., Shin, O.H., Machius, M., Tomchick, D.R., Sudhof, T.C., and Rizo, J. (2004). Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4. Nature structural & molecular biology 11, 844-849. Dean, C., Liu, H., Dunning, F.M., Chang, P.Y., Jackson, M.B., and Chapman, E.R. (2009). Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nature neuroscience 12, 767-776. Debski, E.A., and Cline, H.T. (2002). Activity-dependent mapping in the retinotectal projection. Current opinion in neurobiology 12, 93-99. Feller, M.B. (1999). Spontaneous correlated activity in developing neural circuits. Neuron 22, 653-656. Fernandez, I., Arac, D., Ubach, J., Gerber, S.H., Shin, O., Gao, Y., Anderson, R.G., Sudhof, T.C., and Rizo, J. (2001). Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057-1069. Firth, S.I., Wang, C.T., and Feller, M.B. (2005). Retinal waves: mechanisms and function in visual system development. Cell calcium 37, 425-432. Fox, M.A., and Sanes, J.R. (2007). Synaptotagmin I and II are present in distinct subsets of central synapses. The Journal of comparative neurology 503, 280-296. Fukuda, M., Kanno, E., and Mikoshiba, K. (1999). Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X. The Journal of biological chemistry 274, 31421-31427. Fukuda, M., and Mikoshiba, K. (2000). Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family. Journal of biochemistry 128, 637-645. Gao, Z., Reavey-Cantwell, J., Young, R.A., Jegier, P., and Wolf, B.A. (2000). Synaptotagmin III/VII isoforms mediate Ca2+-induced insulin secretion in pancreatic islet beta -cells. The Journal of biological chemistry 275, 36079-36085. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L., and Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559-566. Geppert, M., Archer, B.T., 3rd, and Sudhof, T.C. (1991). Synaptotagmin II. A novel differentially distributed form of synaptotagmin. The Journal of biological chemistry 266, 13548-13552. Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., and Sudhof, T.C. (1994). Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717-727. Gonzalez-Islas, C., and Wenner, P. (2006). Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron 49, 563-575. Grimberg, E., Peng, Z., Hammel, I., and Sagi-Eisenberg, R. (2003). Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. Journal of cell science 116, 145-154. Grubb, M.S., Rossi, F.M., Changeux, J.P., and Thompson, I.D. (2003). Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40, 1161-1172. Gust, J., Wright, J.J., Pratt, E.B., and Bosma, M.M. (2003). Development of synchronized activity of cranial motor neurons in the segmented embryonic mouse hindbrain. The Journal of physiology 550, 123-133. Gut, A., Kiraly, C.E., Fukuda, M., Mikoshiba, K., Wollheim, C.B., and Lang, J. (2001). Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. Journal of cell science 114, 1709-1716. Hebb, D.O. (1949). The Organization of Behavior. Hu, X., Huang, J., Feng, L., Fukudome, S., Hamajima, Y., and Lin, J. (2010). Sonic hedgehog (SHH) promotes the differentiation of mouse cochlear neural progenitors via the Math1-Brn3.1 signaling pathway in vitro. Journal of neuroscience research 88, 927-935. Huberman, A.D., Stellwagen, D., and Chapman, B. (2002). Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 9419-9429. Huberman, A.D., Wang, G.Y., Liets, L.C., Collins, O.A., Chapman, B., and Chalupa, L.M. (2003). Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science 300, 994-998. Hui, E., Johnson, C.P., Yao, J., Dunning, F.M., and Chapman, E.R. (2009). Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138, 709-721. Jackson, M.B., and Chapman, E.R. (2006). Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annual review of biophysics and biomolecular structure 35, 135-160. Jaubert-Miazza, L., Green, E., Lo, F.S., Bui, K., Mills, J., and Guido, W. (2005). Structural and functional composition of the developing retinogeniculate pathway in the mouse. Visual neuroscience 22, 661-676. Kim, S.H., Choi, Y.M., Jang, J.Y., Chung, S., Kang, Y.K., and Park, M.K. (2007). Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons. Pflugers Archiv : European journal of physiology 455, 309-321. Kochubey, O., Lou, X., and Schneggenburger, R. (2011). Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse. Trends Neurosci 34, 237-246. Kolb, H. (2003). How the retina works - Much of the construction of an image takes place in the retina itself through the use of specialized neural circuits. Am Sci 91, 28-35. Kolb, H. (2011). Simple Anatomy of the Retina. In Webvision (Webvision: The Organization of the Retina and Visual System). Lewis, D.A., and Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annual review of neuroscience 25, 409-432. Li, C., Ullrich, B., Zhang, J.Z., Anderson, R.G., Brose, N., and Sudhof, T.C. (1995). Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594-599. Liu, M., Duggan, J., Salt, T.E., and Cordeiro, M.F. (2011). Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Experimental eye research 92, 244-250. Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M., and Reist, N.E. (2002). The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418, 340-344. Marqueze, B., Boudier, J.A., Mizuta, M., Inagaki, N., Seino, S., and Seagar, M. (1995). Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 15, 4906-4917. Masztalerz, A., Zeelenberg, I.S., Wijnands, Y.M., de Bruijn, R., Drager, A.M., Janssen, H., and Roos, E. (2007). Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration. Journal of cell science 120, 219-228. McLaughlin, T., Torborg, C.L., Feller, M.B., and O'Leary, D.D. (2003). Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147-1160. Mesentier-Louro, L.A., Coronel, J., Zaverucha-do-Valle, C., Mencalha, A., Paredes, B.D., Abdelhay, E., Mendez-Otero, R., and Santiago, M.F. (2012). Cell therapy modulates expression of Tax1-binding protein 1 and synaptotagmin IV in a model of optic nerve lesion. Investigative ophthalmology & visual science 53, 4720-4729. Mizuta, M., Inagaki, N., Nemoto, Y., Matsukura, S., Takahashi, M., and Seino, S. (1994). Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. The Journal of biological chemistry 269, 11675-11678. Mizuta, M., Kurose, T., Miki, T., Shoji-Kasai, Y., Takahashi, M., Seino, S., and Matsukura, S. (1997). Localization and functional role of synaptotagmin III in insulin secretory vesicles in pancreatic beta-cells. Diabetes 46, 2002-2006. Osborne, S.L., Herreros, J., Bastiaens, P.I., and Schiavo, G. (1999). Calcium-dependent oligomerization of synaptotagmins I and II. Synaptotagmins I and II are localized on the same synaptic vesicle and heterodimerize in the presence of calcium. The Journal of biological chemistry 274, 59-66. Pan, L., Deng, M., Xie, X., and Gan, L. (2008). ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development (Cambridge, England) 135, 1981-1990. Pang, Z.P., and Sudhof, T.C. (2010). Cell biology of Ca2+-triggered exocytosis. Current opinion in cell biology 22, 496-505. Patterson, P.H. (2007). Neuroscience. Maternal effects on schizophrenia risk. Science 318, 576-577. Penn, A.A., Riquelme, P.A., Feller, M.B., and Shatz, C.J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108-2112. Perin, M.S., Brose, N., Jahn, R., and Sudhof, T.C. (1991). Domain structure of synaptotagmin (p65). The Journal of biological chemistry 266, 623-629. Reist, N.E., Buchanan, J., Li, J., DiAntonio, A., Buxton, E.M., and Schwarz, T.L. (1998). Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 7662-7673. Rossi, F.M., Pizzorusso, T., Porciatti, V., Marubio, L.M., Maffei, L., and Changeux, J.P. (2001). Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proceedings of the National Academy of Sciences of the United States of America 98, 6453-6458. Shatz, C.J., and Stryker, M.P. (1988). Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87-89. Snyder, D.A., Kelly, M.L., and Woodbury, D.J. (2006). SNARE complex regulation by phosphorylation. Cell biochemistry and biophysics 45, 111-123. Soda, T., Nakashima, R., Watanabe, D., Nakajima, K., Pastan, I., and Nakanishi, S. (2003). Segregation and coactivation of developing neocortical layer 1 neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 6272-6279. Spitzer, N.C. (2006). Electrical activity in early neuronal development. Nature 444, 707-712. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Sudhof, T.C., and Sprang, S.R. (1995). Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929-938. Sutton, R.B., Ernst, J.A., and Brunger, A.T. (1999). Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. J Cell Biol 147, 589-598. Syed, M.M., Lee, S., Zheng, J., and Zhou, Z.J. (2004). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. The Journal of physiology 560, 533-549. Thomas, D.M., Ferguson, G.D., Herschman, H.R., and Elferink, L.A. (1999). Functional and biochemical analysis of the C2 domains of synaptotagmin IV. Molecular biology of the cell 10, 2285-2295. Torborg, C.L., and Feller, M.B. (2005). Spontaneous patterned retinal activity and the refinement of retinal projections. Progress in neurobiology 76, 213-235. Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E., and Bergles, D.E. (2007). The origin of spontaneous activity in the developing auditory system. Nature 450, 50-55. Ullrich, B., Li, C., Zhang, J.Z., McMahon, H., Anderson, R.G., Geppert, M., and Sudhof, T.C. (1994). Functional properties of multiple synaptotagmins in brain. Neuron 13, 1281-1291. Vician, L., Lim, I.K., Ferguson, G., Tocco, G., Baudry, M., and Herschman, H.R. (1995). Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proceedings of the National Academy of Sciences of the United States of America 92, 2164-2168. Vrljic, M., Strop, P., Ernst, J.A., Sutton, R.B., Chu, S., and Brunger, A.T. (2010). Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. Nature structural & molecular biology 17, 325-331. Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R., and Jackson, M.B. (2006). Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. The Journal of physiology 570, 295-307. Wang, C.T., Blankenship, A.G., Anishchenko, A., Elstrott, J., Fikhman, M., Nakanishi, S., and Feller, M.B. (2007). GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 9130-9140. Wang, C.T., Grishanin, R., Earles, C.A., Chang, P.Y., Martin, T.F., Chapman, E.R., and Jackson, M.B. (2001). Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111-1115. Wang, C.T., Lu, J.C., Bai, J., Chang, P.Y., Martin, T.F., Chapman, E.R., and Jackson, M.B. (2003). Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943-947. Watanabe, D., Inokawa, H., Hashimoto, K., Suzuki, N., Kano, M., Shigemoto, R., Hirano, T., Toyama, K., Kaneko, S., Yokoi, M., et al. (1998). Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95, 17-27. Weishaupt, J.H., Klocker, N., and Bahr, M. (2005). Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells. Journal of molecular neuroscience : MN 26, 17-25. Wong, R.O., and Oakley, D.M. (1996). Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron 16, 1087-1095. Wong, W.T., Sanes, J.R., and Wong, R.O. (1998). Developmentally regulated spontaneous activity in the embryonic chick retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 8839-8852. Zhang, Z., Bhalla, A., Dean, C., Chapman, E.R., and Jackson, M.B. (2009). Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nature neuroscience 12, 163-171. Zhang, Z., Hui, E., Chapman, E.R., and Jackson, M.B. (2010). Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Molecular biology of the cell 21, 2821-2831. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62161 | - |
| dc.description.abstract | 雙眼視覺神經發育過程中,視覺神經網路修飾需要在視網膜引發的一系列規律性、自發性的放電反應,稱之為「視網膜波」。視網膜波在發育的關鍵期(大鼠為出生後四天到八天)會影響到視網膜節細胞的軸突投射到腦區,而形成雙眼視野分離的現象。在大鼠出生剛出生到出生後的第九天,視網膜波的調控是由一群突觸前細胞(星狀無軸突細胞)釋放出乙醯膽鹼到突觸後的視網膜節細胞,此時期稱為第二期視網膜波。因此,改變星狀無軸突細胞的釋放機制可以調控第二期視網膜波。 Synaptotagmin (Syt) 家族是一種鈣離子感應蛋白,可以引發鈣離子調節的胞吐作用來影響神經傳導物質的釋放。目前為止Syt家族總共發現有17種不同的isoforms。先前的研究得知,Syt I在第二期視網膜波時期,可透過其 C2AB Domain 和鈣離子結合,正向地調控視網膜波。然而,在第二期視網膜波中,其他 Syt isoforms在視網膜內表現的情形和功能至今並不清楚。在本研究中,我們偵測 Syt isoforms (Syt I, III, IV) 在發育的視網膜以及視神經中的時空表現模式,以進而探討其在視網膜發育過程中可能的功能。研究結果發現,在視網膜發育過程中, Syt I 在視網膜內側以及視神經中的表現相對穩定,而 Syt III 在形成視野分離的關鍵時期中,於視網膜內側以及視神經中的表現模式和表現量會隨著發育過程有顯著性的變化。因此,我們專一研究 Syt III 是否會調控視網膜波;利用分子干擾技術以及活細胞鈣離子顯像技術,我們可以瞭解 Syt III 在視網膜波中所扮演的角色。藉由去測量與視網膜波相關的鈣離子流的性質,我們發現,在突觸前星狀無軸突細胞或突觸後視網膜節細胞內大量表現 Syt III都會讓視網膜波的鈣離子流的頻率顯著增加。此外,在突觸後視網膜節細胞內大量表現 Syt III 會減弱鈣離子流在細胞之間傳遞的同步性;相反的,減少Syt III 在視網膜節細胞的表現可以增加空間傳遞的同步性質。因此,我們的研究結果顯示,在發育大鼠的視網膜中,Syt III可分別在突觸前星狀無軸突細胞以及突觸後視網膜節細胞,不同地調控第二期視網膜波的時間與空間性質;因此,Syt III可能在視野分離中扮演重要的角色。 | zh_TW |
| dc.description.abstract | Binocular visual circuit refinement requires a robust patterned spontaneous activity in the developing retina, termed as retinal waves. During the developmental critical period (P4 - P8 in rodent), retinal waves modulate the axon projection of retinal output neurons (retinal ganglion cells, RGCs) to their central brain targets, so visual circuits can be refined as eye-specific segregation. In postnatal rodent (P0 - P9), retinal waves are initiated via a subset of interneurons (starburst amacrine cells, SACs) releasing acetylcholine (ACh) onto postsynaptic RGCs (so-called stage-II waves). Therefore, altering the releasing mechanism in presynaptic SACs can modulate stage-II waves. Synaptotagmin (Syt) family serves as a Ca2+ sensor during Ca2+-regulated exocytosis to mediate neurotransmitter release. To date, more than seventeen Syt isoforms have been discovered. Our previous study has shown that Syt I positively regulates stage-II waves by Ca2+ binding to its C2AB domains. However, the expression and function of other Syt isoforms remain elusive during stage-II waves. In the study, we investigated the spatiotemporal expression pattern of Syt isoforms (I, III and IV) in the developing rat retina and optic nerve, in order to explore their possible functions during development. We found that distinct from Syt I, Syt III was expressed in a unique pattern in inner retinas and optic nerves, and the expression levels were dramatically increased during the period of eye-specific segregation. Thus, we focused on the role of Syt III in regulating retinal waves. Whole-mount rat retinas (P0 - P2) were transfected with the DNA vectors carrying Syt III or antisense-Syt III in presynaptic SACs or RGCs. Control was the vector carrying the transfection marker EGFP. By measuring the Ca2+ transients associated with retinal waves, we found that the Ca2+ transient frequency was significantly increased by Syt III overexpression in either SACs or RGCs compared to control. Moreover, the spatial correlation of retinal waves was dampened by Syt III overexpression in RGCs but not in SACs, whereas Syt III knockdown in RGCs increased the spatial correlation. Thus, our results suggest that Syt III may differentially regulate the temporal and spatial properties of stage-II waves via SACs or RGCs in the developing rat retina. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:31:09Z (GMT). No. of bitstreams: 1 ntu-102-R00b43013-1.pdf: 15797592 bytes, checksum: bcbde0a562736e67d854d6718205b14c (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 國立臺灣大學(碩)博士學位論文口試委員會審定書 i
Acknowledgements ii 中文摘要 iv Abstract vi Abbreviations viii Contents xi Chapter I 1 Introduction 1 1.1 Development of the Nervous System 1 1.2 Organization of the visual system 1 1.3 The structure of retinas 2 1.4 Visual transduction 3 1.5 Patterned spontaneous activity 4 1.6 Retinal waves 4 1.7 Eye-specific segregation 5 1.8 Synaptic transmission 6 1.9 Synaptotagmins 7 1.10 Synaptotagmin III 9 Objectives of the study 11 Chapter II 14 Materials and Methods 14 2.1 Animals 14 2.2 Vector construction and subcloning 14 2.3 Dissections of retinas and optic nerves 17 2.4 Retinal explant culture 18 2.5 In vitro electroporation 19 2.6 Antibodies 19 2.7 Immunofluorescence 20 2.8 Ca2+ imaging 23 2.9 Data analysis of Ca2+ imaging 25 2.10 Statistics 26 Chapter III 27 Results 27 3.1 The Syt isoforms were expressed with distinct patterns in the developing rat retinas. 27 3.2 The Syt isoforms were expressed with distinct patterns in the developing rat optic nerves. 29 3.3 The Syt isoforms were localized to RGCs axons. 30 3.4 Syt III and Syt IV were partially localized to Syt I. 31 3.5 Syt III increased the frequency of Ca2+ transients associated with retinal waves.. 32 3.6 Presynaptic Syt III increased the frequency of Ca2+ transients associated with retinal waves. 35 3.7 The Brn3b promoter can target gene expression specifically to RGCs. 39 3.8 Postsynaptic Syt III increased the frequency and altered the spatial property of Ca2+ transients associated with retinal waves 40 Chapter IV 45 Discussion 45 4.1 The expression patterns of Syt isoforms in the developing rat optic nerves 45 4.2 The spatial expression patterns of Syt isoforms in the developing rat inner retinas. 46 4.3 The temporal expression patterns of Syt isoforms in the developing rat retina 47 4.4 Comparison of the expression patterns in inner retinas and optic nerves for Syt isoforms during development. 48 4.5 The distribution patterns of Syt III and IV in the developing rat optic nerves 48 4.6 Distinct expression patterns of Syt IV in the developing and adult rat retinas. 49 4.7 The functional role of Syt III in retinal waves. 50 4.7.1 The functional role of Syt III in presynaptic SACs 51 4.7.2 The functional role of Syt III in postsynaptic RGCs. 51 4.8 The characteristics of Ca2+ transients are not affected by molecular manipulations with different promoters. 52 Chapter V 55 Conclusion 55 References 56 Fig. 1 The structure of eye ball and retina 70 Fig. 2 Visual transduction pathway and projection. The primate visual pathways from the retina to the central visual targets. 71 Fig. 3 Illustration of Retinal waves 72 Fig. 4 Illustration of eye-specific segregation 74 Fig. 5 SNARE complex and Synaptotagmin III 76 Fig. 6 Syt isoforms express in RGCs soma during developing 78 Fig. 7 Syt isforms express in retina during developing. 79 Fig. 8 Spatial distribution of Syt isoforms by line-scan analysis. 82 Fig. 9 Spatiotemporal expression patterns of Syt isoforms 84 Fig.10 Expression of Syt isoforms in rat optic nerves during development. 86 Fig. 11 Syt III and Syt IV localized to RGC axons 87 Fig. 12 Syt III and Syt IV were partially localized to Syt I. 89 Fig. 13 The spatial property of spontaneous Ca2+ transients was not changed by overexpression of Syt III or anti-sense Syt III. 91 Fig. 14 The frequency and interval of spontaneous Ca2+ transients were changed by overexpression of Syt III. 93 Fig. 15 The amplitude of spontaneous Ca2+ transients increased by overexpressing of Syt III compared to AS-Syt III. 95 Fig. 16 The spatial property of spontaneous Ca2+ transients was not changed by overexpression of Syt III or anti-sense Syt III in SACs. 97 Fig. 17 The frequency and interval of spontaneous Ca2+ transients were changed by overexpression of Syt III in SACs 99 Fig. 18 The amplitude and duration of spontaneous Ca2+ transients were not changed by overexpression of Syt III in SACs 101 Fig. 19 The Brn3b promoter targeted gene expression to RGCs. 103 Fig. 20 The spatial property of spontaneous Ca2+ transients was changed by overexpression of Syt III or anti-sense Syt III in RGCs. 105 Fig. 21 The frequency and interval of spontaneous Ca2+ transients were changed by overexpression of Syt III in RGCs. 107 Fig. 22 The amplitude and duration of spontaneous Ca2+ transients were not changed by overexpression of Syt III in RGCs. 109 Fig. 23 The properties of retinal waves were not changed by transfection of different control vectors, such as pCMV-IRES2-EGFP, pmGluR2-IRES2-EGFP, and pBrn3b-IRES2-EGFP 111 Fig. 24 The working model that Syt III regulates the retinal waves in both SACs and RGCs and its special expression patterns. 113 Table. 1 The list of primers 114 Table. 2 List of primary antibodies used in this study. 115 Table. 3 List of secondary antibodies used in this study. 116 Table. 4 Value of correlation Index expressed by promoter CMV 117 Table. 5 Value of correlation Index expressed by promoter mGluR2 118 Table. 6 Value of correlation Index expressed by promoter Brn3b 119 Appendix 120 Appendix I 121 Appendix II - Abstract and poster 138 | |
| dc.language.iso | en | |
| dc.subject | 規律自發性放電反應 | zh_TW |
| dc.subject | Synaptotagmin III | zh_TW |
| dc.subject | 鈣離子影像技術 | zh_TW |
| dc.subject | 視野分離 | zh_TW |
| dc.subject | 視網膜波 | zh_TW |
| dc.subject | eye-specific segregation | en |
| dc.subject | calcium imaging | en |
| dc.subject | patterned spontaneous activity | en |
| dc.subject | retinal waves | en |
| dc.subject | synaptotagmin III | en |
| dc.title | Synaptotagmin III在大鼠視網膜的發育過程中所扮演的角色 | zh_TW |
| dc.title | The Functional Role of Synaptotagmin III in the Developing Rat Retina | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳示國,徐立中,盧主欽,周申如 | |
| dc.subject.keyword | Synaptotagmin III,視網膜波,規律自發性放電反應,視野分離,鈣離子影像技術, | zh_TW |
| dc.subject.keyword | synaptotagmin III,retinal waves,patterned spontaneous activity,eye-specific segregation,calcium imaging, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 15.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
