請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62151完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘堯(Ming-Yau Chern) | |
| dc.contributor.author | Bing-Kun Wu | en |
| dc.contributor.author | 吳炳琨 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:30:35Z | - |
| dc.date.available | 2013-07-30 | |
| dc.date.copyright | 2013-07-30 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-22 | |
| dc.identifier.citation | [1] Dumé, Belle (23 April 2003). 'Bismuth breaks half-life record for alpha decay'. Physicsweb.http://physicsweb.org/articles/news/7/4/16.
[2] M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagelstein and M. S. Dresselhaus, Appl. Phys. Lett. 77, 4142 (2000). [3] V. S. Edelman, Adv. Phys. 25, 555 (1976) [4] N. Garcia, Y. H. Kao and M. Strongin, Phys. Rev. B 5, 2029 (1972) [5] V. P. Duggal and R. Rup, J. Appl. Phys. 40, 492 (1969) [6] J. Heremans and C. M. Thrush, Phys. Rev. B 59, 12 579 (1999) [7] Y. F. Ogrin, V. N. Lutskii and M. I. Elinson, JETP Letters 3, 71 (1966) [8] C. Kittel, 1996, Introduction to solid state physics, 7th edn, Wiley: New York [9] M.S. Dresselhaus, Y. M. Lin, S.B. Cronin, O. Rabi, M.R. Black and G. Dresselhaus, In Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, Academic Press, (2001) [10] Generalic, Eni.'Bismuth.'EniG.Periodic Table of the Elements, http://www.periodni.com/en/bi.html (2010) [11] G. Carotenuto, C. L. Hison, F. Capezzuto, M. Palomba, P. Perlo and P. Conte, J. Nanopart Res. 11, 1729 (2009) [12] J. Heremans, C. M. Thrush, Y. M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. F. Mansfield, Phys. Rev. B 61 2921 (2000) [13] Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying and J. Heremans, Phys. Rev. B 61 4850 (2000) [14] K. Liu, C. L. Chien, P. C. Searson and K. Y. Zhang, Appl. Phys. Lett. 73 1436 (1998) [15] Y. Lin, X. Sun and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000) [16] Z. Ye, H. Zhang, H. Liu, W. Wu and Z. Luo, Physica B: Condensed Matter 403, 1529 (2008) [17] M. L. Tian, J. G. Wang, N. Kumar, T. H. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk and M. H. W. Chan, Nano Lett. 6, 2773 (2006) [18] J. Heremans, C. M. Thrush, Yu-Ming Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. F. Mansfield,Phys. Rev. B 61 2921 (2000) [19] A. Nikolaeva, T. E. Huber, D. Gitsu and L. Konopko, PRB 77, 035422 (2008) [20] T. W. Cornelius, M. E. Toimil-Molares, S. Karim and R. Neumann, Phys. Rev. B 77, 125425 (2008) [21] A. Nikolaeva, A. Burchakov and D. Gitsu, Mater. Sci. Eng. A 288, 298 (2000) [22] A. Nikolaeva, T. E. Huber D. Gitsu and L. Konopko, Phys. Rev. B 77, 035422 (2008) [23] A.V. Ulitovski, N.M. Avernin, Patent No. 161325 (USSR), 19.03.64, Bulletin No. 7, 14 [24] W. Shim, J. Ham, K. I. Lee, W. Y. Jeung, M. Johnson and W. Lee, Nano Lett. 9, 18 (2009). [25] H. T. Chu et al., Phys. Rev. B 45, 11 233 (1992) [26]J. Heremans, C. M. Thrush, Yu-Ming Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. F. Mansfield, J. Nanosci. Nanotechnol. 11, 2047 (2011) [27] Y. Liu and E. Allen, Phys. Rev. B 52, 1566 (1995) [28] H. T. Chu and W. Zhang, J. Phys. Chem. Solids 53, 1059 (1992) [29] H. T. Chu et al., Phys. Rev. B 37, 3900 (1988) [30] T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci and S. Karim, Appl. Phys. Lett. 88, 103114 (2006) [31] X. Sun, Z. Zhang and M. S. Dresselhaus, Appl. Phys. Lett. 74, 4005 (1999) [32] C. A. Hoffman, J. R. Meyer and F. J. Baroli, Phys. Rev. B 48, 11431 (1993) [33] Y. F. Komnik, E. I. Bukhshtab, Y. V. Nikitin and V. V. Andrievskii, Zh. Eksp. Teor. Fiz. 60, 669 (1971) [34] Yu. F. Komnik and V. V. Andrievskii, Fiz. Nizk. Temp. 1, 104 (1975);Sov. J. Low Temp. Phys. 1, 51(1975) [35] S. Agergaard, C. Søndergaard, H. Li, M. B. Nielsen, S. V. Hoffmann, Z. Li and P. Hofmann, New J. of Phy. 3, 15 (2001) [36] J. Sun, A. Mikkelsen, M. Fuglsang Jensen, Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, D. L. Adams,Ph. Hofmann and K. Pohl, Phys. Rev. B 74, 245406 (2006) [37] K. S. Wu and M. Y. Chern, J. Appl. Phys. 104, 033704 (2008) [38] L. D. Hicks, and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) [39] G. Dresselhaus et al., in International Conference on Thermoelectrics (IEEE, Piscataway, NJ, Nagoya, Japan, 1998), p. 43 [40] G. Carotenuto, C. L. Hison, F. Capezzuto, M. Palomba, P. Perlo and P. Conte, J. Nanopart Res. 11, 1729 (2009) [41] M. Liang, 'An Introduction to the Scope, Potential and Applications of X-ray Analysis' in International Union of Crystallographers Teaching Pamphlets (1997) [42] J. Ham, W. Shim, D. H. Kim, K. H. Oh, P. W. Voorhees and W. Lee, Appl. Phys. Lett. 98 (2011) 043102. [43] Johnson Norman L., Kotz Samuel;,Balakrishnan N., (1994), '14: Lognormal Distributions', Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-58495-7, MR 1299979 [44] G. Phanikumar, P. Dutta, R. Galun, K. Chattopadhyay, Mat. Sci. Eng. A 371, 91 (2004) [45] J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, New Jer- sey, 1971). [46] D. Marchak, D. Glozman, Y. Vinshtein, S.l Jarby, Y. Lereah, O. Cheshnovsky, and Y. Selzer, Nano Lett 12, 1087 (2012) [47] R. E. Sherriff and R. P. Devaty, Phys. Rev. B 48, 1525 (1993) [48] R. E. Sherriff and R. P. Devaty, Physica A 157, 395 (1989) [49] G. Phanikumar, P. Dutta, R. Galun, K. Chattopadhyay, Mat. Sci. Eng. A 371, 91 (2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62151 | - |
| dc.description.abstract | 在此論文中,我們利用射頻濺鍍法在康寧玻璃基板上自然成長鉍奈米線及奈米顆粒,在不同溫度和濺鍍槍功率找出奈米線及奈米顆粒的成長機制。利用掃描式電子顯微鏡及穿透式電子顯微鏡照片觀察奈米線及奈米顆粒的成長,發現溫度在120 ~ 160 ˚C及濺鍍槍功率在 0.5 W/cm2時,可自然成長出粗細一致的鉍奈米線。溫度在200 ˚C以上及濺鍍槍功率在 0.12 W/cm2時,可自然成長出單層鉍的奈米顆粒,利用成長時間不同,生長出不同顆粒大小的鉍奈米顆粒,進而量測鉍奈米顆粒的性質。 | zh_TW |
| dc.description.abstract | Abstract
We report the growth of Bismuth (Bi) nanowires and nanoparticles on glass substrates using a radio frequency (RF) sputtering system. The growth temperature and RF power were varied to study the growth mechanism of the nanowires or nanoparticles. The scanning electron microscope (SEM) / transmission electron microscope (TEM) images of the samples under various growth conditions were taken to reveal the morphologies of the Bi nanowires and films. We found that the optimal conditions for growing Bi nanowires were 120 ~ 160 ˚C, 0.5 W/cm2 (growth rate 40 Å/s at RT), and 240 s. The optimal conditions for growing Bi nanoparticles were above 200 ˚C, 0.12 W/cm2 (growth rate 6 Å/s at RT). A Tauc plot was used to determine the optical gap of different size nanoparticles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:30:35Z (GMT). No. of bitstreams: 1 ntu-102-D96222017-1.pdf: 4714863 bytes, checksum: 9222e7d39b2381ed7835294e1e854d6e (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………………i
中文摘要………………………………………………………………………………ii Abstract………………………………………………………………………………iii Contents………………………………………………………………………………iv List of Figures………………………………………………………………………vii List of Tables…………………………………………………………………………x Chapter 1 Introduction………………………………………………………………1 1.1 History………………………………………………………………………1 1.2 Crystal Structure of Bi………………………………………………………2 1.3 Bi Bulk………………………………………………………………………3 1.4 Bi Thin Films………………………………………………………………4 1.5 Bi Nanowires…………………………………………………………………4 1.6 Growth of Bi Nanowires……………………………………………………5 1.7 Bi Nanoparticles……………………………………………………………6 1.8 Growth of Bi Nanoparticles…………………………………………………7 1.9 Band Structure of Bi………………………………………………………8 1.10 Semimetal-to-Semiconductor Transition (SMSC) ………………………10 1.11 The Bi(110) Surface………………………………………………………12 1.12 The Bi(111) Surface………………………………………………………13 1.13 The Bi(100) Surface………………………………………………………16 1.14 Density of States…………………………………………………………18 Chapter 2 Experiment………………………………………………………………19 2.1 The deposition chamber……………………………………………………19 2.2 Sputtering…………………………………………………………………20 2.2.1 Sputtering history………………………………………………………20 2.2.2 The power supply sputtering…………………………………………21 2.2.2a DC Sputtering………………………………………………………21 2.2.2b RF Sputtering………………………………………………………21 2.2.1c Magnetron Sputtering……………………………………………22 Chapter 3 Measuring Instrument……………………………………………………27 3.1 X-ray Diffraction (XRD) …………………………………………………27 3.1.1 Bragg's law……………………………………………………………28 3.1.2 Reciprocal Lattice ……………………………………………………30 3.1.3 Ewald’s sphere…………………………………………………………32 3.2 Scanning Electron Microscopy (SEM) ……………………………………34 3.3 Transmission electron microscopy (TEM) …………………………………36 3.4 Tauc plot……………………………………………………………………39 Chapter 4 Bi Nanowires Result………………………………………………………40 4.1 The First Experiment (Different Temperature) ……………………………40 4.2 The Second Experiment (Different Time) …………………………………44 4.3 The Third Experiment (Different Power Densities) ………………………46 4.4 TEM image and Diffraction Pattern………………………………………50 4.5 X-ray diffraction……………………………………………………………55 4.6 The Fourth Experiment……………………………………………………56 4.7 Conclusion…………………………………………………………………57 Chapter 5 Bi Nanoparticles Result…………………………………………………59 5.1 The First Experiment………………………………………………………60 5.2 The Second Experiment……………………………………………………61 5.3 Optical properties analysis…………………………………………………66 5.4 The Third Experiment………………………………………………………69 5.5 Conclusion…………………………………………………………………74 References……………………………………………………………………………79 Appendix……………………………………………………………………………79 A.1 Reciprocal Lattice of the Rhombohedral Structure………………………79 A.2 In hexagonal indexing……………………………………………………81 | |
| dc.language.iso | en | |
| dc.subject | 掃描式電子顯微鏡 | zh_TW |
| dc.subject | 鉍 | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 射頻濺鍍 | zh_TW |
| dc.subject | RF sputter | en |
| dc.subject | nanowire | en |
| dc.subject | Bismuth | en |
| dc.subject | nanoparticle | en |
| dc.subject | SEM | en |
| dc.title | 利用射頻濺鍍法自然成長鉍的奈米線及奈米顆粒 | zh_TW |
| dc.title | Bismuth Nanowire and Nanoparticle Grown Naturally Using an RF Sputtering System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊鴻昌(Hong-Chang Yang),陳政維(Jeng-Wei Chen),梁?德(Chi-Te Liang),駱芳鈺(Fan-Yuh Lo) | |
| dc.subject.keyword | 鉍,奈米線,奈米顆粒,射頻濺鍍,掃描式電子顯微鏡, | zh_TW |
| dc.subject.keyword | Bismuth,nanowire,nanoparticle,RF sputter,SEM, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-22 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
