Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62147
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄧茂華
dc.contributor.authorPang-Wen Lien
dc.contributor.author李雱雯zh_TW
dc.date.accessioned2021-06-16T13:30:21Z-
dc.date.available2014-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-22
dc.identifier.citation[1] Wikipedia – Iron (http://en.wikipedia.org/wiki/Iron)
[2] S. R. Chung, K. W. Wang, M. H. Teng, T. P. Perng (2009) “Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder”, Int. J. Hydrogen Energy, Vol. 34, pp. 1383-1388
[3] 吳俊人 (2007) “利用聚乙二醇和葉酸接枝於石墨包覆鐵磁性奈米粒子做癌症之熱治療”,國立台灣大學碩士論文,共123頁。
[4] 邱志成 (2012)。以高合成效率的製程方法合成石墨包裹奈米鐵、鈷、鎳以及同晶粒之初步研究。國立台灣大學碩士論文。
[5] T. J. Konno and R. Sinclair (1995) “Crystallization of amorphous carbon in carbon-cobalt layered thin films”, Acta. Metall. Mater., Vol. 43, pp. 471-484.
[6] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley (1985) “C60: Buckminsterfullerene” Nature, Vol.318, pp.162-163
[7] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman (1990) “Solid C60: a new form of carbon”, Nature, Vol. 347, pp. 354-358
[8] S. Iijima (1991) ” Helical microtubules of graphitic carbon” , Nature, Vol. 354, pp.56 – 58
[9] A. K. Geim, and K. S. Novoselov, (2007). “The rise of grapheme”. Nature Materials Vol. 6, pp. 183–191.
[10] C. Lee, X. Wei, J. W. Kysar and J. Hone (2008) ” Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene” Science Vol. 18, pp. 385-388
[11] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim (2008) Science Vol.320
[12] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer (2008) “Intrinsic and extrinsic performance limits of graphene devices on SiO2” Nature Nanotechnology Vol.3, pp. 206-209
[13] N. Savage (2012) “Materials science: Super carbon” Nature Vol. 483, S30–S31
[14] 盧永坤 (2005)。奈米科技概論。滄海書局。
[15] A. S. Edelstein, and R. C. Cammarata (1996) “Nanomaterials: Synthesis, Properties and Applications”
[16] 呂英治與洪敏雄 (2001)。奈米材料及製程介紹。科儀新知,22 (6),pp.49-53。
[17] 呂睿晟 (2011)。非磁性石墨包裹奈米晶粒合成方法之初步研究。國立台灣大學碩士論文。
[18] 莊萬發 (1995)。超微粒子材料技術。復漢出版社。
[19] M. Tomita, Y. Saito, & T. Hayashi. (1993). “LaC2 Encapsulated in Graphite Nano-Particle.” J. Appl. Phys, pp. L280-L282.
[20] R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney (1993) “Single Crystal Metals Encapsulated in Carbon Nanoparticles”, Science, Vol. 259, pp. 602–604.
[21] J. J. Host, M. H. Teng, B. R. Elliot, J. H. Hwang, T. O. Mason, D. L. Johnson and V. P. Dravid (1996) “Graphite encapsulated nanocrystals produced using a low carbon : metal ratio”, J. Mater. Res., Vol. 12, No. 5, pp. 1268-1273
[22] V. P. Dravid, J. J. Host, M. H. Teng, B. R. Elliot, J. H. Hwang, D. L. Johnson, T. O. Mason, J. R. Weertman (1995) “Controlled-size nanocapsules”, Nature, pp.602
[23] Y. Saito, T. Yoshikawa, M. Okuda, M. Fujimoto, K. Sumiyama, K. Suzuki, A. Kasuya and Y. Nishina (1993) “Carbon nanocapsules encaging metals and carbides”, J. Phys. Chem. Solids, Vol. 54, pp.1849–1860.
[24] C. Guerret-Piecourt, Y. Lebouar and H. Pascard (1994) “Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes”, Nature, Vol. 372, pp. 761–765.
[25] S. Seraphin, D. Zhou, and J. Jiao (1996) ”Filling the carbon nanocages”, J. Appl. Phys., Vol. 80, pp.2079–2104.
[26] Y. Saito (1995) “Nanoparticles and filled nanocapsules”, Carbon, Vol. 33, pp. 979–988.
[27] S. Seraphin, D. Zhou, and J. Jiao, M. Minke and S. Wang, T. Yadav, J. C. Withers (1994) “Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters”, Chem. Phys. Lett., Vol. 217, pp. 191–195.
[28] J. J. Host (1997) “Arc Synthesis And Magnetic Properties of Graphite Encapsulated Nanocrystals”, Dissertation for Ph. D, Northwestern University.
[29] 張麗娟 (1999)。石墨包裹奈米鎳晶粒的純化分離效果初步研究。國立台灣大學碩士論文。
[30] J. C. Lo, J. C. Lu, M. H. Teng (2011) “A new crucible design of the arc-discharge method for the synthesis of graphite encapsulated metal (GEM) nanoparticles”, Diamond Relat. Mater., Vol. 20, pp. 330-333
[31] 鄭啟煇 (2002)。用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果。國立台灣大學碩士論文。
[32] M. H. Teng, S. W. Tsai, C. I. Hsiao, Y. D. Chen (2007) “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method”, J. Alloy Compd., Vol. 434-435, pp. 678-681
[33] C. C. Chiu, J. C. Lo, M. H. Teng (2012) “A novel high efficiency method for the synthesis of graphite encapsulated metal (GEM) nanoparticles” Diamond & Related Materials, Vol. 24, pp.179–183
[34] 林沛彥 (1999)。石墨包裹奈米晶粒材料與機械設計。國立台灣大學學士論文。
[35] 林春長 (2002)。石墨包裹奈米鈷晶粒之純化研究。國立台灣大學碩士論文。
[36] 蕭敦仁 (2005)。石墨包裹奈米鎳晶粒在高溫高壓下合成鑽石的初步探討。國立台灣大學碩士論文。
[37] 陳永得 (2006)。以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果。國立台灣大學碩士論文。
[38] 蕭崇毅 (2006)。合成石墨包裹奈以金屬晶粒製程中熔融金屬內碳源料變化之初步研究。國立台灣大學碩士論文
[39] 李尚實 (2006)。不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9膠體系統中之分散研究。國立台灣大學碩士論文。
[40] 蔡少葳 (2007)。石墨包裹奈米鎳晶粒的緻密化之初步研究。國立台灣大學碩士論文。
[41] 羅仁傑 (2010)。石墨包裹奈米鐵晶粒的合成方法改進研究:石墨坩堝設計。國立台灣大學碩士論文。
[42] 蕭淵隆 (2010)。甲醇之蒸散速率效應對石墨包裹奈米鎳晶粒緻密化之研究。國立台灣大學碩士論文。
[43] J. Jiao, and S. Seraphin, (1998) “Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti”J. Appl. Phys., Vol. 83, No. 5, pp. 2442-2448
[44] F. Banhart, J. C. Charlier, and P. M. Ajayan, (2000) “Dynamic behavior of nickel atoms in graphite networks” Physical review letters Vol. 84, No. 4, pp.686-689
[45] F. Banhart, P. Redlich, and P. M. Ajayan, Chem. Phys. Lett. 292, 554 (1998).
[46] 鄭信民與林麗娟 (2002)。X光繞射應用簡介。工業材料雜誌,181,pp.100-108。
[47] 鮑忠興與劉思謙 (2008)。近代穿透式電子顯微鏡實務。滄海書局。
[48] P. W. Atkins (1998) “Physical Chemistry 6th edition”
[49] I. R. Lewis, and H. G. M. Edwards (2001) “Handbook of Raman Spectroscopy: From the Research Laboratory to the Processing Line”
[50] F. Tuinstra and J. L. Koenig (1970) “Raman Spectrum of Graphite”, J. Chem. Phys., Vol. 53, No. 3, pp. 1126-1130
[51] S. Brunauer, P. H. Emmett and E. Teller (1938) “Absorption on nonporous solids”, J. Am. Chem. Soc., Vol. 60, pp.309-319
[52] M. A. Lieberman and A. J. Litchtenberg (2005) “Principles of Plasma Discharge and Materials Processing”
[53] M. Miao, Y. Liu, T. Wu, Q. Wang, K. E. Gubbins (2011) “Does a Hydrogen Atom/Proton Diffuse Through Graphene ?” diffusion-fundamentals.org, 66, pp 1-2.
[54] 楊勇輝,孫紅娟,彭同江,黃橋 (2011)。石墨烯薄膜的製備和結構表徵。物理化学学报,27 (3),pp.736-742。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62147-
dc.description.abstract石墨包裹金屬奈米晶粒(Graphite Encapsulated Metal Nanoparticles, GEM),為具有石墨層包裹於金屬內核的球狀複合奈米材料,粒徑介於5-100 nm。GEM之石墨外殼能保護內核金屬不受水解、酸蝕、及氧化環境的侵蝕,使GEM在多種極端環境下保持內核金屬原有的特質。例如:極易氧化的鐵金屬便可藉由石墨外層的保護維持在純金屬的狀態,保持其大部分的鐵磁性以及延展性,甚至可以避免奈米鐵氧化速率劇烈提升造成自燃的現象。由於上述優點,以及鐵相對於其他金屬而言較高的生物相容性以及鐵磁性,因此Fe-GEM在生醫相關科技運用有極大的潛力。例如藥物載體以及癌症治療等。
目前本研究室以Teng et al.與Dravid et al.於1995年所發展之改良式鎢-碳電弧法製備GEM,並以液態醇類作為石墨外層之碳源。成功將Co-GEM及Ni-GEM之包裹良率提升至80%。然而,相同製程所合成Fe-GEM之包裹良率卻僅有45%。為改善此情形,本研究利用鐵磁性金屬催化石墨的特殊性質,以退火之熱處理方式提升Fe-GEM之包裹良率。退火之實驗設計中,初產物分別以300℃、400℃、500℃、600℃、700℃、800℃、900℃等持溫溫度進行退火實驗。實驗結果顯示,當退火持溫溫度為300℃,Fe-GEM之包裹良率將自原本之~45%掉至~30%,而隨著持溫溫度的上升包裹良率也逐漸增加,並在700℃達到最高包裹良率80%,一旦退火持溫溫度超過800℃,則包裹良率便急遽降至~20%。
本研究以X光粉末繞射儀(X-ray Diffraction,XRD)分別分析經酸溶磁選與退火前後之產物。分析結果顯示,初產物之XRD分析光譜可見到α-Fe與γ-Fe之峰值,但經酸溶後產物之γ-Fe峰值會消失,顯示包裹不完全的顆粒中,其內核鐵金屬除少量常溫相之α-Fe外,絕大部分屬於高溫相的γ-Fe。而由退火後之XRD分析證實,高溫不穩定相之γ-Fe在退火後產生相轉變,並於低溫退火(300℃-500℃)中,傾向形成碳化鐵(Fe3C),且退火溫度越低,碳化鐵含量比例越高。
由於γ-Fe、α-Fe及Fe3C 之含碳量的差異(2.07%、0.02%、6.7%),造成Fe-GEM於不同退火持溫溫度下,其包裹良率相對改變。於低溫退火時,γ-Fe傾向轉變為高溶碳能力的碳化鐵(Fe3C),不僅無法於GEM外層形成碳殼,甚至使原本包裹於顆粒外的非晶質碳也轉而形成Fe3C,造成原本由非晶質碳包裹的顆粒成為不完全包裹,致使低溫退火後Fe-GEM的包裹良率下降。而針對退火持溫溫度超過
700℃時開始下降的包裹良率,本研究將純化後之顆粒以900℃退火,並進行SEM分析。於SEM影像中可於顆粒間發現不規則形狀之熔融金屬,推測為內核金屬由石墨外殼之裂隙擴散至外部造成。
根據實驗結果可知,影響Fe-GEM初產物退火後之包裹良率有兩種影響原因,一為初產物中非晶質碳的含量比例,非晶質碳表示初產物內於退火過程中可變動的碳,當非晶質碳越多,包裹良率的變化越大;第二個則是退火持溫溫度。過低的退火溫度會造成Fe3C含量比例上升,使產物中之碳源不足以完整包裹金屬內核,造成良率下降;而過高之退火溫度造成良率下降的原因則為內核金屬由石墨外殼之缺陷擴散至外部。因此Fe-GEM可於700℃退火持溫溫度可達最佳之包裹良率80%。
zh_TW
dc.description.abstractGraphite encapsulated metal (GEM) nanoparticles are spherical composite materials with core-and-shell structure, coated with several layers of graphite shells on its surface. And the shells will protect GEM in an acidic or oxidative environment. i.e., iron nanoparticles maintain most of its ferromagnetic and ductility, and would not combust spontaneously that causes by the oxidation of iron nanoparticles. With the alternative core materials, GEM can show either magnetic or other physical properties. Because of its variety and stable properties, GEM is useful in a number of applications, For example, Co-GEM with a fcc cobalt core exhibits excellent hydrogen storage ability, and Fe-GEM, which this study focus on, has extensive applications, from drug delivery agents to thermo seeds for hyperthermia therapy, mainly due to its excellent biocompatibility and magnetism.
To improve the production rate and encapsulation efficiency of GEM, the modified tungsten arc discharge method developed by Teng et al. and Dravid et al. in 1995 has been used. Furthermore, the solid carbon source has been replaced by liquid alcohol to increase the encapsulation efficiency. Using the above process to synthesize ferromagnetic GEM, the encapsulation efficiency of Co-GEM and Ni-GEM is around 80 wt%, While for Fe-GEM, however, is only 45 wt%. To increase the encapsulation efficiency of Fe-GEM, the as-made powder of Fe-GEM were annealed under 1 atm 5%-H2/Ar at 300℃, 400℃, 500℃, 600℃, 700℃, 800℃ and 900℃ for two hours.
Iron has been well documented possessing excellent catalytic ability that transforming amorphous carbon, i.e., carbon black, into well-crystallized graphite layers. Ideally, the amorphous carbon will first dissolve into the iron metal core of ill-encapsulated Fe-GEM nanoparticles, and then it will be catalyzed by iron nanocrystals core, forming small pieces of graphite flakes. Finally, the graphite pieces will move to the surface of iron nanocrystals and complete the encapsulation processes.
According to the experimental results, the encapsulation efficiency of annealed Fe-GEM varies with annealing temperature. The as-made powder initial encapsulation efficiency of as-made Fe-GEM powders is around 45%, and it can be 80% after annealing temperature reaching 700℃. However, some annealing temperatures reduce the encapsulation efficiency instead, i.e., encapsulation efficiency is only around 30% when annealing at 300℃, and down to 20% when annealing at 900℃.
XRD results shows that the amount of cementite (Fe3C) increases at lower annealing temperature (300℃-500℃). Unlike α-Fe, which can dissolve only a small amount of carbon (no more than 0.021 wt %), cementite contains 6.7% of carbon. That is, instead of graphite, much of amorphous carbon was used to form cementite. And this causes the low encapsulation efficiency at low annealing temperature.
According to the TEM images, most of the well-graphitized outer shell of Fe-GEM were destroyed after annealing at 900℃. This causes the cracks between pieces of graphite of graphite shell. It is surmise that iron atom move from inner core to outside by diffusion through these cracks, and cause the low encapsulation efficiency of Fe-GEM at annealing temperature over 700℃.
In conclusion, the encapsulation efficiency of Fe-GEM is controlled by the annealing temperature, and the amorphous carbon in as-made powder. When annealing temperature is 700℃, Fe-GEM has highest encapsulation efficiency (~80%).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:30:21Z (GMT). No. of bitstreams: 1
ntu-102-R99224213-1.pdf: 9039611 bytes, checksum: a3879cb8ed9d758200160883b61dfcd6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
誌謝……………………………………………………………………………...... i
中文摘要………………………………………………………………………...... iii
ABSTRACT…………………………………………………………………….... v
目錄……………………………………………………………………………...... vii
圖目錄…………………………………………………………………………….. x
表目錄……………………………………………………………………………. xiii
第一章……………………………………………………………………………. 1
1.1 研究動機與目的………………………………………………………... 1
1.2 研究方法………………………………………………………………... 3
1.3 本文內容………………………………………………………………... 3
第二章 文獻回顧………………………………………………………………… 5
2.1 奈米材料…………………………………………………………………. 5
2.1.1 奈米碳材…………………………………………………………….. 6
2.1.1.1 富勒烯(Fullerene,又稱巴克球)…………………………… 6
2.1.1.2 奈米碳管(nanotube)………………………………………… 6
2.1.1.3 石墨烯(Graphene)…………………………………………… 7
2.1.2 奈米尺度下材料之磁性質………………………………………….. 8
2.2 奈米材料製作方式………………………………………………………. 9
2.2.1 液相法……………………………………………………………….. 9
2.2.2 物理粉碎法………………………………………………………….. 9
2.2.3 氣相法……………………………………………………………….. 10
2.2.3.1 電弧放電法(arc discharge)…………………………………….. 10
2.2.3.2 催化劑化學氣相沉積法……………………………………....... 11
2.3 石墨包裹奈米金屬晶粒…………………………………………………. 12
2.3.1 改良式鎢-碳電弧法………………………………………………..... 13
2.3.2 二步驟機制模型(Two Step Mechanism)………………………… 14
2.3.2.1 相分離………………………………………………………....... 14
2.3.2.2 催化…………………………………………………………....... 14
2.3.3 石墨包裹奈米金屬晶粒之製程改進……………………………….. 17
2.3.3.1 陽極石墨坩堝之改良………………………………………....... 17
2.3.3.2 碳源種類之改進……………………………………………....... 18
2.4 退火………………………………………………………………………. 22
2.4.1 石墨包裹奈米鎳、鈷、銅晶粒退火後之情形……………………….. 22
2.4.2 退火後良率增加之石墨包裹奈米鈷晶粒………………………….. 24
2.4.3 石墨包裹奈米鎳之金屬內核移至外部之方法…………………….. 24
第三章 實驗方法………………………………………………………………… 26
3.1 初產物製備…………………………………………………..................... 26
3.1.1 初產物製備之實驗裝置…………………………………................. 26
3.1.1.1 電源供應裝置…………………………………………............ 26
3.1.1.2 液態醇類導入裝置……………………………………............ 26
3.1.1.3 真空艙………………………………………………................ 28
3.1.1.4 水冷系統………………………………………………............ 28
3.1.2 初產物製備流程…………………………………………................. 29
3.1.2.1 石墨坩堝製作與原料配置……………………………............ 29
3.1.2.2 艙內配置及氣氛………………………………………............ 30
3.1.2.3 啟動電弧………………………………………………............ 30
3.2 純化…………………………………………………………..................... 31
3.3 本研究改善之導入裝置—霧狀噴嘴………………………..................... 33
3.4 本研究修正之程序─退火程序………………………………………….. 34
3.5 實驗分析儀器………………………………………………..................... 36
3.5.1 X光粉末繞射儀(X-ray powder diffractometer)…………………… 36
3.5.2 掃描式電子顯微鏡(Scanning Electron Microscope)…………….. 38
3.5.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)……………………………………………………................. 40
3.5.4 拉曼光譜儀………………………………………………................. 42
3.5.5 比表面積分析儀…………………………………………................. 44
第四章 實驗結果與討論………………………………………………………… 46
4.1 液態醇類導入裝置改良對Fe-GEM包裹良率之影響…………………. 46
4.1.1 電弧持續時間增加…………………………………………………. 47
4.1.2 產量降低……………………………………………………………. 48
4.1.3 包裹良率下降(45% → 25%)……………………………………. 50
4.1.4 石墨包裹奈米鐵晶粒粒徑變小 (28.1 nm → 23.3 nm)………… 50
4.2 以液態醇類作為碳源與Fe-GEM自燃之關係………………………… 52
4.3 造成石墨包裹奈米鐵晶粒之包裹良率低下之原因……………………. 53
4.4 石墨包裹奈米鐵晶粒退火之模型………………………………………. 57
4.5 石墨包裹奈米鐵晶粒退火之初步結果…………………………………. 59
4.6 初產物退火後良率下降之原因…………………………………………. 60
4.6.1 造成低溫退火包裹良率下降之原因(300℃-500℃)……………. 60
4.6.2 造成高溫退火包裹良率下降之原因(900℃)…………………… 63
4.7 提升石墨包裹奈米鐵之包裹良率………………………………………. 67
4.8 退火後Fe-GEM外殼石墨化程度………………………………………. 68
第五章 結論與未來工作………………………………………………………… 69
REFERENCES……………………………………………………………………. 71
附錄一-Fe-GEM經各退火溫度後之包裹良率之原始數據……………………... 75
dc.language.isozh-TW
dc.title以退火改善石墨包裹奈米鐵晶粒之包裹良率zh_TW
dc.titleAnnealing effect on the encapsulation efficiency of iron graphite encapsulated metal nanoparticlesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄,鄧茂英,王玉瑞
dc.subject.keyword退火,石墨,鐵,奈米,zh_TW
dc.subject.keywordanneal,graphite,iron,nanoparticle,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2013-07-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:地質科學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
8.83 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved