Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王亞男(Ya-Nan Wang)
dc.contributor.authorDe-Rui Huangen
dc.contributor.author黃德瑞zh_TW
dc.date.accessioned2021-06-16T13:29:40Z-
dc.date.available2013-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-22
dc.identifier.citation王佑萱, 李訓谷 (2008). 屋頂隔熱性能檢測技術與節能效益模擬分析研究. 建築學報(66_S): 23-34.
王松永 (1985). 木材對居住環境之調節特性. 林產工業 4(2): 45-58.
王松永 (2005). 綠建築中的建材-木質材料. 科學發展月刊 389: 21-27.
王松永, 卓志隆 (1991). 木材內裝對室內溫度與濕度之調節效應(一). 林產工業 10(2): 1-25.
王松永, 廖琪鋒, 卓志隆 (1994). 木材內裝對屋內溫度與相對濕度之調節效應. 中華林學季刊 27-4: 145-159.
王松永, 蔡明哲, 塗三賢 (2009). 木材利用對減緩二氧化碳排放之貢獻. 全球變遷通訊雜誌 61: 7-13
王錦堂 (1986). 建築應用物理學. 台北:臺隆書店.
卓志隆 (1992). 木質環境對溫濕度調節效應之研究. 博士論文, 國立台灣大學.
周鼎金 (1995). 建築物理. 旭瀛文化事業公司: 196.
林晏州 (2002). 行道樹景觀美質評估方法之研究. 造園學報 8(2): 91-115.
林盛隆, 魏士閔, 黃俊豪, 陳王琨 (2008). 簡報室熱舒適度案例之研究. 建築學報 65: 125-138.
林貫文 (2006). 應用遺傳演算法於智慧型空間熱舒適度系統之研究. 碩士論文, 國立成功大學.
林憲德 (1996). 台灣建築產業的能源與環保評估. 國科會專題研究報告 NSC85-2212-E-006-002.
林憲德 (1996). 熱濕氣候的綠色建築計畫. 台北:詹氏書局.
林憲德 (2007). 建築外殼節能設計管制效益與二氧化碳減量目標. 台北: 內政部建築研究所.
林憲德 (2009). 人居熱環境. 臺北市, 詹氏.
洪裕昇, 徐文志, 黎驥文, 孫振義, 施陽正, 林靜娟, 張又升, 林優陸, 施冠群, 李魁鵬 (2008). 台北市都市熱島之變遷與退燒策略. 台北.
洪增淵 (2004). 演講廳之室內環境品質調查與分析. 碩士論文, 朝陽科技大學.
晁 梅干野, 堀口 剛, 何江 (1994). 芝生葉群層の熱收支特性に關する實驗研究-屋上植栽の熱環境調整效果 第一報. 日本建築學會計劃系論文集 462.
高國峰 (2000). 利用紅外線熱像技術觀測環境綠化效果之研究. 碩士論文, 國立台灣科技大學.
張又升 (2002). 建築物生命週期二氧化碳減量評估. 博士論文, 國立成功大學.
張簡宏裕 (2002). 屋頂覆土植栽之熱收支研究-以鵝掌藤植栽為例. 碩士論文, 國立台灣科技大學.
莊振賢 (2001). 國人舒適感調查研究. 碩士論文, 國立台北科技大學.
莊嘉文 (1993). 建築設備概論. 台北:詹氏書局.
許瑞銘 (2006). 屋頂綠化熱效益之研究. 碩士論文, 朝陽科技大學.
都市綠化技術開發機構.特殊綠化共同研究會 (1996). Neo-green space design(2). 株式會社誠文堂新光社,日本:東京.
陳瑞源 (2003). 將都市外皮膚歸還自然---綠屋頂介紹. 造園季刊 46: 39-42.
陳瑞鈴 (2000). 綠建築評估及標章制度. 邁向21世紀永續建築環境國際研討會.
登 關野, 朝倉靖弘, 和田羊一 (1993). 低密度パ-テイクルホ-ド調濕性能. 木材學會誌 39(2): 144-151.
廖志中 (1998). 木質內裝材料及木質複合壁體隔熱效應之研究. 博士論文, 國立台灣大學.
賴光邦 (1984). 敷地計劃中局部氣候之控制. 臺北市 : 六合.
顏妙芬 (2002). 高溫高濕換氣後對室內溫濕度之調節效應. 碩士論文.
蘇俊榮 (2008). 熱舒適度之探討---以南投縣鹿谷鄉廣興國小教室為例. 碩士論文, 朝陽科技大學.
蘇榮宗 (2009). 屋頂植草覆土層熱效應之研究. 碩士論文, 國立高雄大學.
邱繼哲 (2002). 建築物及生物成長設施之誘導式通風冷卻設計研究─以雙層外殼內置流動空氣層構造為例. 碩士論文, 國立臺灣大學.
楊宗文 (2001). 適應性類神經模糊推論系統在舒適度模型上的應用. 碩士論文, 國立臺灣大學.
7730 ISO (1995). Moderate Thermal Environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Internation Standards Organisation, Geneva: 1-49.
Alexandri Eleftheria, Phil Jones (2007). Developing a one-dimensional heat and mass transfer algorithm for describing the effect of green roofs on the built environment: Comparison with experimental results. Building and Environment 42(8): 2835-2849.
ASHRAE (1997). Thermal Comfort. ASHRAE Handbook of Fundamental Chapter 8: 37-55.
Bradshaw J. D. (1993). A review of the median tectonic zone - terrane boundaries and terrane amalgamation near the median tectonic line. New Zealand Journal of Geology and Geophysics 36(1): 117-125.
C.J. Simonson, M. Salonvaara, T. Ojanen (2001). Improving indoor climate and comfort with wooden structures. VTT Building Technology, Espoo:VTT Publications: 431.
Eumorfopoulou E., D. Aravantinos (1998). The contribution of a planted roof to the thermal protection of buildings in Greece. Energy and Buildings 27(1): 29-36.
Fanger P. O. (1967). Calculation of thermal comfort:Introduction of a basic thermo comfort equation. ASHRAE Transactions 73: 263-271.
Gaur R.C., N.K. Bansal (2002). Effect of moisture transfer across building components on room temperature. Buildings and Environment 37: 11-17.
Hameury Stephane (2005). Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: a numerical study. Building and Environment 40(10): 1400-1412.
Liu, Karen K.Y., Baskaran B.A. (2003). Thermal performance of green roofs through field evaluation. National Research Council, Ottawa, Canada.
McNall P. E., J. Jaax, F. H. Rohles, R. G. Nevins (1967). Thermo comfort(thermally neutral)conditions for three levels of activity. ASHRAE Transactions 73: 143-150.
Nevins R. G., F. H. Rohles, W. Springer, A. M. Feyerherm (1966). Temperature-humidity chart for thermal comfort of seated persons. ASHRAE Transactions 72: 283-291.
Nyuk Hien Wong, Tan Puay Yok, Chen Yu (2007). Study of thermal performance of extensive rooftop greenery systems in the tropical climate. Building and Environment 42(1): 25-54.
Onmura S., M. Matsumoto, S. Hokoi (2001). Study on evaporative cooling effect of roof lawn gardens. Energy and Buildings 33(7): 653-666.
Osanyintola O. F., C. J. Simonson (2006). Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact. Energy and Buildings 38(10): 1270-1282.
Qin Menghao, Rafik Belarbi, Abdelkarim Ait-Mokhtar, Francis Allard (2009). Simulation of coupled heat and moisture transfer in air-conditioned buildings. Automation in Construction 18(5): 624-631.
Serra R. (1995). Les energies a l'arquitectura. Edicions UPC, Barcelona, Spain: 57-73.
Spala A., H. S. Bagiorgas, M. N. Assimakopoulos, J. Kalavrouziotis, D. Matthopoulos, G. Mihalakakou (2008). On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renewable Energy 33(1): 173-177.
Takakura T., S. Kitade, E. Goto (2000). Cooling effect of greenery cover over a building. Energy and Buildings 31(1): 1-6.
Takebayashi Hideki, Masakazu Moriyama (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment 42(8): 2971-2979.
Tang M. F., Z. J. Yang (2007). Thermal characteristics of green roof in natural climate. Journal of Central South University of Technology 14: 39-42.
Teemusk Alar, Uelo Mander (2009). Greenroof potential to reduce temperature fluctuations of a roof membrane: A case study from Estonia. Building and Environment 44(3): 643-650.
Wang S.Y., C.L. Cho (1996). The conditioning effect of wooden interior finish on room temperature and relative humidity, Mokuzai Gakkaishi. 42(1): 16-24.
Wang Song-Yung, Ming-Jer Tsai (1998). Assessment of temperature and relative humidity conditioning performances of interior decoration materials. Journal Of Wood Science 44(4): 267-274.
Wang Song-Yung, Ming-Jer Tsai (2000). Assessment of temperature and relative humidity conditioning performances of interior decoration materials in the Taipei area (II). Journal Of Wood Science 46(6): 470-476.
Wong N. H., Y. Chen, C. L. Ong, A. Sia (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment 38(2): 261-270.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62135-
dc.description.abstract台灣大部分的建築物構造為鋼筋混凝土,其特性是對於風力及地震力有較好的抵抗力,但此類型建築物的隔熱性能差,於夏冬兩季往往會造成許多能量的消耗與二氧化碳的排放,對於環境的影響甚大。本研究對於不同壁裝率(A/V,A為壁裝材料面積,V為空間體積,單位m-1)與不同壁裝方式之杉木(Cunninghamia lanceolata)壁板及人工草皮或台北草(Zoysia matrella)屋頂覆蓋對於調節室內溫濕度環境及降低室內能源消耗影響效果進行試驗。試驗材料為兩棟長4.6公尺、寬4.2公尺、高3.2公尺的混凝土實驗屋,實驗組以可拆卸式木壁板作為內部裝潢,或於屋頂施以天然草皮或人工草皮覆蓋,兩組皆控制室溫為25°C。實驗紀錄以溫濕度變動比評估木材裝潢及屋頂覆蓋對室內溫濕度調節的穩定性,以中位數相對關係評估木材裝潢及屋頂覆蓋對室內溫濕度調節的調節性,以溫濕度記錄合於舒適範圍內的比例(THI值)作為室內舒適度指標,並以室內空調用電量之差異(Esr值)評估木材裝潢及屋頂覆蓋的節能減碳效益。實驗結果顯示,以兩至五面牆體內部加設木壁板內裝對於室內溫濕度調節具有正面的效果,人工草皮進行覆蓋對於室內溫濕度調節效益影響不大,而天然草皮的蒸發散現象及覆土厚度會影響對室內溫濕度的調節效益。舒適度效益部分,以四面牆體內部加設木壁板內裝時,對於室內舒適度之維持最為理想,人工草皮屋頂覆蓋對室內環境之調控效益不大,而單以天然草皮屋頂覆蓋對於室內舒適度的維持可能不夠,需以木材內壁裝潢作為搭配。在節省能源效益部分,木材內裝能節省6%~53%的用電量,以人工草皮覆蓋屋頂會增加室內空調之耗電量,而天然草皮覆蓋能大幅降低室內空調的運作。zh_TW
dc.description.abstractMost school buildings and residences in Taiwan were constructed with reinforced concrete (RC). Their walls provide good strength against typhoons in summer. However, it also causes higher energy consumption, carbon dioxide emissions, and an unhealthy living environment. The effect of plantation wood (China fir, Cunninghamia lanceolata) used for interior wall finish and roof coverings (artificial turf or Manila Grass, Zoysia matrella) on the indoor environment conditioning effect, the power consumption and carbon dioxide emission reduction was explored in a temperature (25℃) controlled room (Room B; Room A was without wood finish as the control) by changing the number of wooden interior finish on walls. The two experimental rooms constructed with reinforced concrete had approximate dimensions of 4.6 m in length, 4.2 m in width, and 3.2m in height. Temperature and humidity changing ratio is used to assess the stable force of timber and roof cover on the indoor temperature and humidity, median relative relationship is used to assessed regulating force of timber and roof cover on the indoor temperature and humidity, the ratio of temperature and humidity within the comfort range(THI value) is used as indicators of indoor comfort, and the difference of indoor air-conditioning electricity consumption(Esr value) is used to assess timber decoration and roof-covered carbon reduction benefits. During the experimental period, two to five side of interior wall finish has a positive effect on conditioning effect for indoor temperature and humidity, artificial turf roof covering has little effect, and evapotranspiration and soil layer thickness of natural turf will affect the conditioning effect for the indoor temperature and humidity regulation. For indoor comfort benefits, four side of interior wall finish has a positive effect for the maintenance of indoor comfort ideal state, artificial turf roof covering still has little effect, and only natural turf roof covering may not be sufficient to maintain a comfortable indoor environment state, need to coordinate with wood interior adjust the set temperature. For power saving rate, wood interior generally able to save 6% to 53% of electricity consumption, natural turf roof covering also has the postive effect, and artificial turf covering roof will increase the power consumption of the indoor air conditioning. Combining the above considerations, two to four interior walls finish will be recommended for commercial buildings, three to five interior walls finish will be recommended for residences, which could lead to a substantial reduction in energy requirements, carbon dioxide emissions, and a better living environment.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:29:40Z (GMT). No. of bitstreams: 1
ntu-102-R00625053-1.pdf: 2700612 bytes, checksum: d870647369aba491df0f03b108019371 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘 要 II
Abstract III
第一章、 前言 1
第二章、 文獻回顧 3
2.1建築傳熱理論 3
2.2木材的調節功能 10
2.3植栽的調節功能 12
2.4熱舒適度 19
第三章、 試驗材料與方法 23
3.1試驗材料 23
3.2試驗方法 26
第四章、 結果 28
4.1 試驗屋建造與使用階段之二氧化碳排放比較 28
4.2 室內環境與外界環境變化監測 31
4.2.1 不同內壁裝潢對室內溫度變化影響 31
4.2.2 不同屋頂覆蓋對室內溫度變化影響 47
4.2.3 不同內壁裝潢對室內相對濕度變化影響 51
4.2.4 不同屋頂覆蓋對室內相對濕度變化影響 67
4.3 室內環境舒適度與外界環境變化評估 71
第五章、 討論 77
5.1 溫度調節效率評估指標 77
5.2 相對濕度調節效率評估指標 80
5.3 舒適度評估指標 83
5.4 能源節省效益 86
第六章、 結論 89
參考文獻 91
dc.language.isozh-TW
dc.subject節能減碳zh_TW
dc.subject溫濕度調節zh_TW
dc.subject木材內裝zh_TW
dc.subject屋頂覆蓋zh_TW
dc.subjectPlantation wooden
dc.subjectPower consumptionen
dc.subjectRoof coveringen
dc.subjectTemperature and humidity conditioningen
dc.title木質內裝與屋頂綠化對住宅室內溫濕度與節能減碳之效應zh_TW
dc.titleEffect of wooden interior wall finish and green roof on residential indoor temperature and humidity conditioning, energy saving and carbon reductionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor蔡明哲(Ming-Jer Tsai)
dc.contributor.oralexamcommittee王松永(Song-yung Wang),葉民權(Min-chyuan Yen),卓志隆(Chih-Lung Cho)
dc.subject.keyword節能減碳,溫濕度調節,木材內裝,屋頂覆蓋,zh_TW
dc.subject.keywordPower consumption,Temperature and humidity conditioning,Plantation wood,Roof covering,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2013-07-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved